Injuries are often attributed to ruck marching. Therefore, it is important to examine how load carriage influences gait mechanics. The purpose of this study was to examine how subtle changes in rucksack load influence joint torque patterns during marching. Fourteen Army ROTC cadets marched with light, moderate, and heavy rucksack loads. Kinetic and kinematic data were recorded via an instrumented treadmill and motion capture system and principal component analysis was used to analyse the joint torque waveforms. Cadets exhibited moderate-large increases in knee extension torques during early stance (effect sizes ≥0.45) and small-moderate increases in ankle plantarflexion torques during push off (effect sizes ≥0.23) with each incremental increase in rucksack load. The lighter load also resulted in lower hip extension torques during early stance and flexion torques during late stance, vs. the moderate and heavier loads (effect sizes ≥0.23). It appears that subtle changes in rucksack load influence marching mechanics. : The purpose of this study was to examine how relatively subtle changes in rucksack load influence marching mechanics. Army ROTC cadets marched with relatively light, moderate, and heavy rucksack loads. Our results indicate that even subtle changes in rucksack load influence joint torque patterns of the hip, knee, and ankle. ROTC: reserve officer training corps; RoF: rating-of-fatigue; PC: principal component; ICC: intraclass correlation coefficient; ES: effect size.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00140139.2021.1893391DOI Listing

Publication Analysis

Top Keywords

rucksack load
24
changes rucksack
20
subtle changes
16
load influence
16
joint torque
12
rucksack
8
load
8
load lower
8
ruck marching
8
mechanics purpose
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!