A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction model for COVID-19 patient visits in the ambulatory setting. | LitMetric

Objective: Healthcare systems globally were shocked by coronavirus disease 2019 (COVID-19). Policies put in place to curb the tide of the pandemic resulted in a decrease of patient volumes throughout the ambulatory system. The future implications of COVID-19 in healthcare are still unknown, specifically the continued impact on the ambulatory landscape. The primary objective of this study is to accurately forecast the number of COVID-19 and non-COVID-19 weekly visits in primary care practices.

Materials And Methods: This retrospective study was conducted in a single health system in Delaware. All patients' records were abstracted from our electronic health records system (EHR) from January 1, 2019 to July 25, 2020. Patient demographics and comorbidities were compared using t-tests, Chi square, and Mann Whitney U analyses as appropriate. ARIMA time series models were developed to provide an 8-week future forecast for two ambulatory practices (AmbP) and compare it to a naïve moving average approach.

Results: Among the 271,530 patients considered during this study period, 4,195 patients (1.5%) were identified as COVID-19 patients. The best fitting ARIMA models for the two AmbP are as follows: AmbP1 COVID-19+ ARIMAX(4,0,1), AmbP1 nonCOVID-19 ARIMA(2,0,1), AmbP2 COVID-19+ ARIMAX(1,1,1), and AmbP2 nonCOVID-19 ARIMA(1,0,0).

Discussion And Conclusion: Accurately predicting future patient volumes in the ambulatory setting is essential for resource planning and developing safety guidelines. Our findings show that a time series model that accounts for the number of positive COVID-19 patients delivers better performance than a moving average approach for predicting weekly ambulatory patient volumes in a short-term period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941627PMC
http://dx.doi.org/10.21203/rs.3.rs-177379/v1DOI Listing

Publication Analysis

Top Keywords

patient volumes
12
ambulatory setting
8
volumes ambulatory
8
time series
8
moving average
8
covid-19 patients
8
covid-19
6
ambulatory
6
patient
5
prediction model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!