Novel Pannexin-1-Coupled Signaling Cascade Involved in the Control of Endothelial Cell Function and NO-Dependent Relaxation.

Oxid Med Cell Longev

Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile.

Published: May 2021

Deletion of pannexin-1 (Panx-1) leads not only to a reduction in endothelium-derived hyperpolarization but also to an increase in NO-mediated vasodilation. Therefore, we evaluated the participation of Panx-1-formed channels in the control of membrane potential and [Ca] of endothelial cells. Changes in NO-mediated vasodilation, membrane potential, superoxide anion (O ) formation, and endothelial cell [Ca] were analyzed in rat isolated mesenteric arterial beds and primary cultures of mesenteric endothelial cells. Inhibition of Panx-1 channels with probenecid (1 mM) or the Panx-1 blocking peptide Panx (60 M) evoked an increase in the ACh (100 nM)-induced vasodilation of KCl-contracted mesenteries and in the phosphorylation level of endothelial NO synthase (eNOS) at serine 1177 (P-eNOS) and Akt at serine 473 (P-Akt). In addition, probenecid or Panx application activated a rapid, tetrodotoxin (TTX, 300 nM)-sensitive, membrane potential depolarization and [Ca] increase in endothelial cells. Interestingly, the endothelial cell depolarization was converted into a transient spike after removing Ca ions from the buffer solution and in the presence of 100 M mibefradil or 10 M Ni. As expected, Ni also abolished the increment in [Ca]. Expression of Na1.2, Na1.6, and Ca3.2 isoforms of voltage-dependent Na and Ca channels was confirmed by immunocytochemistry. Furthermore, the Panx-1 channel blockade was associated with an increase in O production. Treatment with 10 M TEMPOL or 100 M apocynin prevented the increase in O formation, ACh-induced vasodilation, P-eNOS, and P-Akt observed in response to Panx-1 inhibition. These findings indicate that the Panx-1 channel blockade triggers a novel complex signaling pathway initiated by the sequential activation of TTX-sensitive Na channels and Ca3.2 channels, leading to an increase in NO-mediated vasodilation through a NADPH oxidase-dependent P-eNOS, which suggests that Panx-1 may be involved in the endothelium-dependent control of arterial blood pressure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914086PMC
http://dx.doi.org/10.1155/2021/2678134DOI Listing

Publication Analysis

Top Keywords

endothelial cell
12
no-mediated vasodilation
12
membrane potential
12
endothelial cells
12
increase no-mediated
8
panx-1 channel
8
channel blockade
8
endothelial
7
panx-1
7
increase
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!