Background: SARS-COVID-2 has recently been one of the most life-threatening problems which urgently needs new therapeutic antiviral agents, especially those of herbal origin.

Purpose: The study aimed to load acaciin (ACA) into the new self-assembled nanofibers (NFs) followed by investigating their possible antiviral effect against bovine coronavirus (BCV) as a surrogate model for SARS-COV-2.

Methods: ACA was identified using H-NMR and DEPT-Q C-NMR spectroscopy, the molecular docking study was performed using Autodock 4 and a modification of the traditional solvent injection method was applied for the synthesis of the biodegradable NFs. Different characterization techniques were used to inspect the formation of the NFs, which is followed by antiviral investigation against BCV as well as MTT assay using MDBK cells.

Results: Core/shell NFs, ranging between 80-330 nm with tiny thorn-like branches, were formed which attained an enhanced encapsulation efficiency (97.5 ± 0.53%, P<0.05) and a dual controlled release (a burst release of 65% at 1 h and a sustained release up to >24 h). The antiviral investigation of the formed NFs revealed a significant inhibition of 98.88 ± 0.16% (P<0.05) with IC of 12.6 µM against BCV cells.

Conclusion: The results introduced a new, time/cost-saving strategy for the synthesis of biodegradable NFs without the need for electric current or hazardous cross-linking agents. Moreover, it provided an innovative avenue for the discovery of drugs of herbal origin for the fight against SARS-CoV-2 infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936690PMC
http://dx.doi.org/10.2147/IJN.S298900DOI Listing

Publication Analysis

Top Keywords

self-assembled nanofibers
8
bcv surrogate
8
surrogate model
8
antiviral investigation
8
nfs
5
acaciin-loaded self-assembled
4
nanofibers inhibitors
4
inhibitors bcv
4
model sars-cov-2
4
sars-cov-2 background
4

Similar Publications

Ultrafast, Robust, and Reversible Self-Assembled Nanofibers via Thiolactone Chemistry Strategy.

Small

January 2025

Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China.

Self-assembly in supramolecular chemistry is crucial for nanostructure creation but faces challenges like slow speeds and lack of reversibility. In this study, a novel comb-like polymer poly(amide sulfide) (PAS) based on thiolactone chemistry is reported, which rapidly self-assemble into stable nanofibers, offering excellent robustness and reversibility in the self-assembled structure. The PAS backbone contains pairs of amide bonds, each linked to an alkyl side chain in a controlled 2:1 ratio.

View Article and Find Full Text PDF

Polyphenols, natural compounds abundant in phenolic structures, have received widespread attention due to their antioxidant, anti-inflammatory, antibacterial, and anticancer properties, making them valuable for biomedical applications. However, the green synthesis of polyphenol-based materials with economical and environmentally friendly strategies is of great significance. In this study, a multifunctional wound dressing was achieved by introducing polyphenol-based materials of copper phosphate-tannic acid with a flower-like structure (Cu-TA NFs), which show the reactive oxygen species scavenging performance.

View Article and Find Full Text PDF

The self-assembled peptide RADA16-I (RADARADARADARADA) has been widely used in biomaterials. However, studies on the practical application of self-assembled peptide hydrogels loaded with bioactive peptides are still insufficient. In this study, we successfully prepared the peptide nanofiber gel RGJ by incorporating the bioactive peptides A8SGLP-1 (G) and Jagged-1 (J) into RADA16-I (R) in specific ratios.

View Article and Find Full Text PDF

Shielding siRNA by peptide-based nanofibers: An efficient approach for turning off EGFR gene in breast cancer.

Int J Biol Macromol

December 2024

Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy. Electronic address:

Peptide-based self-assembled nanosystems show great promise as non-viral gene and siRNA delivery vectors. In the current study, we designed and functionalized nanofibers for the delivery of siRNA, targeting and silencing EGFR gene overexpressed in triple-negative breast cancer. The nanofiber-mediated siRNA delivery was characterized in terms of zeta potential, morphology, and structural stability by circular dichroism spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!