The Moon-forming giant impact extensively melts and partially vaporizes the silicate Earth and delivers a substantial mass of metal to Earth's core. The subsequent evolution of the magma ocean and overlying atmosphere has been described by theoretical models but observable constraints on this epoch have proved elusive. Here, we report thermodynamic and climate calculations of the primordial atmosphere during the magma ocean and water ocean epochs respectively and forge new links with observations to gain insight into the behavior of volatiles on the Hadean Earth. As accretion wanes, Earth's magma ocean crystallizes, outgassing the bulk of its volatiles into the primordial atmosphere. The redox state of the magma ocean controls both the chemical composition of the outgassed volatiles and the hydrogen isotopic composition of water oceans that remain after hydrogen escape from the primordial atmosphere. The climate modeling indicates that multi-bar H-rich atmospheres generate sufficient greenhouse warming and rapid kinetics resulting in ocean-atmosphere HO-H isotopic equilibration. Whereas water condenses and is mostly retained, molecular hydrogen does not condense and can escape, allowing large quantities (~10 bars) of hydrogen - if present - to be lost from the Earth in this epoch. Because the escaping inventory of H can be comparable to the hydrogen inventory in primordial water oceans, equilibrium deuterium enrichment can be large with a magnitude that depends on the initial atmospheric H inventory. Under equilibrium partitioning, the water molecule concentrates deuterium and, to the extent that hydrogen in other forms (e.g., H) are significant species in the outgassed atmosphere, pronounced D/H enrichments (~1.5-2x) in the oceans are expected from equilibrium partitioning in this epoch. By contrast, the common view that terrestrial water has a carbonaceous chondritic source requires the oceans to preserve the isotopic composition of that source, undergoing minimal D-enrichment via equilibration with H followed by hydrodynamic escape. Such minimal enrichment places upper limits on the amount of primordial atmospheric H in contact with Hadean water oceans and implies oxidizing conditions (logfO>IW+1, H/HO<0.3) for outgassing from the magma ocean. Preservation of an approximate carbonaceous chondrite D/H signature in the oceans thus provides evidence that the observed oxidation of silicate Earth occurred before crystallization of the final magma ocean, yielding a new constraint on the timing of this critical event in Earth history. The seawater-carbonaceous chondrite "match" in D/H (to ~10-20%) further constrains the prior existence of an atmospheric H inventory - of any origin - on post-giant-impact Earth to <20 bars, and suggests that the terrestrial mantle supplied the oxidant for the chemical resorption of metals during terrestrial late accretion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939044 | PMC |
http://dx.doi.org/10.1016/j.epsl.2019.115770 | DOI Listing |
Sci Rep
January 2025
Saudi Geological Survey, P.O Box: 54141, Jeddah, 21514, Kingdom of Saudi Arabia.
Recent reconnaissance geochemical investigations have unveiled Cryogenian magmatism linked to the compressional accretionary phase, contributing to the growth of the Afif Terrane in the eastern Arabian Shield. The Cryogenian Suwaj intrusive suite, within the Afif Terrane, displays a compositional range from gabbro-diorite to tonalite-granodiorite. The uniform compositional variation is primarily due to magmatic differentiation within parental magma across multiple pulses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Earth Sciences, University of Oregon, Eugene, OR 97403.
Volcanic provinces are among the most active but least well understood landscapes on Earth. Here, we show that the central Cascade arc, USA, exhibits systematic spatial covariation of topography and hydrology that are linked to aging volcanic bedrock, suggesting systematic controls on landscape evolution. At the Cascade crest, a locus of Quaternary volcanism, water circulates deeply through the upper [Formula: see text]1 km of crust but transitions to shallow and dominantly horizontal flow as rocks age away from the arc front.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Archaeology & Palaeoecology, School of Natural and Built Environment, Queen's University, Belfast BT9 3AZ, United Kingdom.
Polar ice cores and historical records evidence a large-magnitude volcanic eruption in 1831 CE. This event was estimated to have injected ~13 Tg of sulfur (S) into the stratosphere which produced various atmospheric optical phenomena and led to Northern Hemisphere climate cooling of ~1 °C. The source of this volcanic event remains enigmatic, though one hypothesis has linked it to a modest phreatomagmatic eruption of Ferdinandea in the Strait of Sicily, which may have emitted additional S through magma-crust interactions with evaporite rocks.
View Article and Find Full Text PDFSci Rep
January 2025
School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China.
In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095.
Crystallization of the lunar magma ocean yielded a chemically unique liquid residuum named KREEP. This component is expressed as a large patch on the near side of the Moon and a possible smaller patch in the northwest portion of the Moon's South Pole-Aitken basin on the far side. Thermal models estimate that the crystallization of the lunar magma ocean (LMO) could have spanned from 10 and 200 My, while studies of radioactive decay systems have yielded inconsistent ages for the completion of LMO crystallization covering over 160 My.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!