Background: In mechanically ventilated subjects, intra-tracheal secretions can be aspirated with either open suction systems (OSS) or closed suction systems (CSS). In contrast to CSS, conventional OSS require temporarily disconnecting the patient from the ventilator, which briefly diminishes PEEP and oxygen supply. On the other hand, CSS are more expensive and less effective at aspirating secretions. Thus, it was hypothesized that the 2 procedures differentially affect pulmonary and cardiovascular parameters after suction.
Methods: Subjects in the ICU ( = 66) were quasi-randomized for initial treatment with OSS or CSS in a crossover design. To compare the potential for these suction systems to compromise cardiorespiratory stability, changes in cardiopulmonary physiology were assessed from before to just after use of each suction system (three 10-s aspirations).
Results: For most pulmonary and cardiovascular parameters (ie, peak inspiratory pressure, airway resistance, pressure plateau, heart rate, and arterial pressures), the effects of aspiration inversely correlated with baseline values for that parameter, with a similar regression slope between suction systems. However, when controlling for baseline values, OSS caused significantly greater increases in airway resistance and peak inspiratory pressure ( < .001 and < .01 vs CSS, respectively).
Conclusions: Elevated airway resistance prior to endotracheal suction may justify use of a CSS and contraindicate a conventional OSS in mechanically ventilated subjects. Adoption of this approach into clinical guidelines may prevent suction-induced pulmonary injury in subjects, especially for those with underlying diseases involving increased airway resistance or increased alveolar pressure. (ClinicalTrials.gov registration: NCT03256214.).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4187/respcare.08511 | DOI Listing |
Semin Perinatol
December 2024
Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Neonatal Intensive Care Unit, University of Patras, Patras, Greece. Electronic address:
Non-invasive ventilation (NIV) is a form of respiratory support provided primarily to preterm born infants in an effort to avoid any endotracheal intubation or as a weaning step following invasive ventilation. In the context of the respiratory distress syndrome of the newborn, NIV could target and partially reverse specific pathophysiological phenomena, by improving alveolar recruitment and establishing adequate functional residual capacity. It can also assist in minimizing lung injury by avoiding excessive pressure delivery, which can be harmful for the developing lung.
View Article and Find Full Text PDFSci Rep
January 2025
Departamento de Ciencias de la Construcción, Facultad de Ciencias de la Construcción Ordenamiento Territorial, Universidad Tecnológica Metropolitana, Santiago, Chile.
There is an initiative driven by the carbon-neutrality nature of biochar in recent times, where various countries across Europe and North America have introduced perks to encourage the production of biochar for construction purposes. This objective aligns with the zero greenhouse emission targets set by COP27 for 2050. This research work seeks to assess the effectiveness of biochar in soils with varying grain size distributions in enhancing the soil-water characteristic curve (SWCC).
View Article and Find Full Text PDFPurpose: To compare the clinical outcomes, surgical workflow, and patient satisfaction following small incision lenticule extraction (SMILE) performed with the VisuMax 800 in one eye and the VisuMax 500 in the contralateral eye (both Carl Zeiss Meditec).
Methods: This was a prospective, single-site clinical study of patients undergoing SMILE for myopia and myopic astigmatism between February 2022 and August 2023. Each patient underwent bilateral treatment using the VisuMax 800 (VM800 group) in one eye and the VisuMax 500 (VM500 group) in the contralateral eye.
J Colloid Interface Sci
December 2024
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China. Electronic address:
The ecological risk of microplastics (MPs) is raising concern about their transport and fate in aquatic ecosystems. The capture of MPs by bubbles is a ubiquitous natural phenomenon in water-based environment, which plays a critical role in the global cycling of MPs, thereby increasing their environmental threats. However, the nanoscale interaction mechanisms between bubbles and MPs underlying MPs transport by bubbles in complex environmental systems remain elusive.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for MicroElectroMechanical Systems (CMEMS), University of Minho, Azurem Campus, 4800-058 Guimaraes, Portugal.
The World Health Organization (WHO) reports 684,000 deaths/year due to slips and falls (SFs), with ∼38 million people requiring medical attention per annum. In particular, SFs on ice surfaces account for 45% of all SF incidents, costing over $100 billion globally in healthcare, intensive care, and insurance expenses. Current antislip solutions focus on hydrophobicity to repel interfacial fluids, aiming to maintain solid-to-solid contact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!