Background: CUPISCO is an ongoing randomized phase II trial (NCT03498521) comparing molecularly guided therapy versus platinum-based chemotherapy in patients newly diagnosed with "unfavorable" cancer of unknown primary (CUP).

Materials And Methods: Patients with an unfavorable CUP diagnosis, as defined by the European Society of Medical Oncology (ESMO), and available cancer tissue for molecular sequencing are generally eligible. Potential patients with CUP entering screening undergo a review involving reference histopathology and clinical work-up by a central eligibility review team (ERT). Patients with "favorable" CUP, a strongly suspected primary site of origin, lack of tissue, or unmet inclusion criteria are excluded.

Results: As of April 30, 2020, 628 patients had entered screening and 346 (55.1%) were screen failed. Screen fails were due to technical reasons (n = 89), failure to meet inclusion and exclusion criteria not directly related to CUP diagnosis (n = 89), and other reasons (n = 33). A total of 124 (35.8%) patients were excluded because unfavorable adeno- or poorly differentiated CUP could not be confirmed by the ERT. These cases were classified into three groups ineligible because of (a) histologic subtype, such as squamous and neuroendocrine, or favorable CUP; (b) evidence of a possible primary tumor; or (c) noncarcinoma histology.

Conclusion: Experience with CUPISCO has highlighted challenges with standardized screening in an international clinical trial and the difficulties in diagnosing unfavorable CUP. Reconfirmation of unfavorable CUP by an ERT in a clinical trial can result in many reasons for screen failures. By sharing this experience, we aim to foster understanding of diagnostic challenges and improve diagnostic pathology and clinical CUP algorithms.

Implications For Practice: A high unmet need exists for improved treatment of cancer of unknown primary (CUP); however, study in a trial setting is faced with the significant challenge of definitively distinguishing CUP from other cancer types. This article reports the authors' experience of this challenge so far in the ongoing CUPISCO trial, which compares treatments guided by patients' unique genetic signatures versus standard chemotherapy. The data presented will aid future decision-making regarding diagnosing true CUP cases; this will have far-reaching implications in the design, execution, and interpretation of not only CUPISCO but also future clinical studies aiming to find much-needed treatment strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100559PMC
http://dx.doi.org/10.1002/onco.13744DOI Listing

Publication Analysis

Top Keywords

cup
13
cancer unknown
12
unknown primary
12
unfavorable cup
12
primary cup
8
cupisco trial
8
cup diagnosis
8
clinical trial
8
patients
7
trial
6

Similar Publications

The lower limit of overpotential derived from the scaling relationship in the generally proposed adsorbate evolution mechanism (AEM) greatly hinders the oxygen evolution reaction (OER) activity in electrochemical energy conversion. The lattice oxygen mechanism tends to be triggered on oxygen-enriched surfaces under conditions; however, the required specific geometry and electronic structure need in-depth exploration. Here, tunable CoO is used as a model material, where the reconstruction of dominantly exposed (110) surface under reaction conditions is first presented using an thermodynamic approach.

View Article and Find Full Text PDF

The aim of the present study was to investigate the potential of human plasma derived exosomes for the delivery of hydroxyurea to enhance its therapeutic efficacy in breast cancer. Plasma derived exosomes were isolated using differential centrifugation along with ultrafiltration method. Hydroxyurea was encapsulated in exosomes using a freeze-thaw method.

View Article and Find Full Text PDF

For sheet metals, anisotropy is a significant property affecting sheet metal forming processes. The anisotropy of sheet metals is caused by the rolling process, and several anisotropic constitutive models have been proposed under the non-associated flow rule to describe the deformation and stress anisotropies of sheet metals independently. However, most of them are based on yield functions that are only identified by the experimental data of orthogonal axes, or yield functions that are applicable to only the plane stress state.

View Article and Find Full Text PDF

Circadian rhythm of intraocular pressure.

J Physiol Sci

January 2025

Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, 819-0395, Fukuoka, Japan. Electronic address:

Intraocular pressure (IOP) plays a crucial role in glaucoma development, involving the dynamics of aqueous humor (AH). AH flows in from the ciliary body and exits through the trabecular meshwork (TM). IOP follows a circadian rhythm synchronized with the suprachiasmatic nucleus (SCN), the circadian pacemaker.

View Article and Find Full Text PDF

In the realm of gene therapy, given the exceptional performance of native exosomes, researchers have redirected their innovative focus towards exosome-mimetic nanovesicles (EMNs); however, the current design of most EMNs relies heavily on native cells or their components, inevitably introducing inter-batch variability issues and posing significant challenges for quality control. To overcome the excessive reliance on native cellular components, this study adopts a unique approach by precisely mimicking the lipid composition of exosomes and innovatively incorporating histone components to recapitulate the gene transfer characteristics of exosomes. We selected sphingomyelin (SM), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), and cholesterol as the lipid components, and employed the double emulsion method to prepare biomimetic exosomes carrying histone A and PEDF-DNA plasmids (His-pDNA@EMNs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!