Efficient automated localization of ECoG electrodes in CT images via shape analysis.

Int J Comput Assist Radiol Surg

Department of Electrical Engineering and Information Technologies, Polytechnic and Basic Sciences School, University of Naples Federico II, Naples, Italy.

Published: April 2021

Purpose: People with drug-refractory epilepsy are potential candidates for surgery. In many cases, epileptogenic zone localization requires intracranial investigations, e.g., via ElectroCorticoGraphy (ECoG), which uses subdural electrodes to map eloquent areas of large cortical regions. Precise electrodes localization on cortical surface is mandatory to delineate the seizure onset zone. Simple thresholding operations performed on patients' computed tomography (CT) volumes recognize electrodes but also other metal objects (e.g., wires, stitches), which need to be manually removed. A new automated method based on shape analysis is proposed, which provides substantially improved performances in ECoG electrodes recognition.

Methods: The proposed method was retrospectively tested on 24 CT volumes of subjects with drug-refractory focal epilepsy, presenting a large number (> 1700) of round platinum electrodes. After CT volume thresholding, six geometric features of voxel clusters (volume, symmetry axes lengths, circularity and cylinder similarity) were used to recognize the actual electrodes among all metal objects via a Gaussian support vector machine (G-SVM). The proposed method was further tested on seven CT volumes from a public repository. Simultaneous recognition of depth and ECoG electrodes was also investigated on three additional CT volumes, containing penetrating depth electrodes.

Results: The G-SVM provided a 99.74% mean classification accuracy across all 24 single-patient datasets, as well as on the combined dataset. High accuracies were obtained also on the CT volumes from public repository (98.27% across all patients, 99.68% on combined dataset). An overall accuracy of 99.34% was achieved for the recognition of depth and ECoG electrodes.

Conclusions: The proposed method accomplishes automated ECoG electrodes localization with unprecedented accuracy and can be easily implemented into existing software for preoperative analysis process. The preliminary yet surprisingly good results achieved for the simultaneous depth and ECoG electrodes recognition are encouraging. Ethical approval n°NCT04479410 by "IRCCS Neuromed" (Pozzilli, Italy), 30th July 2020.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8052236PMC
http://dx.doi.org/10.1007/s11548-021-02325-0DOI Listing

Publication Analysis

Top Keywords

ecog electrodes
20
proposed method
12
depth ecog
12
electrodes
10
shape analysis
8
electrodes localization
8
electrodes metal
8
metal objects
8
tested volumes
8
volumes public
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!