A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Scanning electron microscopy and electron probe microanalyses of the crystalline components of human and animal dental calculi. | LitMetric

A review of the use of scanning electron microscopy (SEM) and electron probe microanalyses in the study of dental calculus showed that such studies provided confirmatory and supplementary data on the morphological features of human dental calculi but gave only limited information on the identity of the crystalline or inorganic components. This study aimed to explore the potential of combined SEM and microanalyses in the identification of the crystalline components of the human and animal dental calculi. Human and animal calculi were analyzed. Identification of the crystalline components were made based on the combined information of the morphology (SEM) and Ca/P molar ratios of the crystals with the morphology and Ca/P molar ratio of synthetic calcium phosphates (brushite or DCPD; octacalcium phosphate, OCP; Mg-substituted whitlockite, beta-TCMP; CO3-substituted apatite, (CHA); and calcite. SEM showed similarities in morphological features of human and animal dental calculi but differences in the forms of crystals present. Microanalyses and crystal morphology data suggested the presence of CaCO3 (calcite) and CHA in the animal (cat, dog, tiger) and of OCP, beta-TCMP and CHA in human dental calculi. X-ray diffraction and infrared (IR) absorption analyses confirmed these results. This exploratory study demonstrated that by taking into consideration what is known about the crystalline components of human and animal dental calculi, combined SEM and microanalyses can provide qualitative identification.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dental calculi
24
human animal
20
crystalline components
16
animal dental
16
components human
12
scanning electron
8
electron microscopy
8
electron probe
8
probe microanalyses
8
morphological features
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!