A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Organic molecular sieve membranes for chemical separations. | LitMetric

Organic molecular sieve membranes for chemical separations.

Chem Soc Rev

Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China and Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.

Published: May 2021

Molecular separations that enable selective transport of target molecules from gas and liquid molecular mixtures, such as CO2 capture, olefin/paraffin separations, and organic solvent nanofiltration, represent the most energy sensitive and significant demands. Membranes are favored for molecular separations owing to the advantages of energy efficiency, simplicity, scalability, and small environmental footprint. A number of emerging microporous organic materials have displayed great potential as building blocks of molecular separation membranes, which not only integrate the rigid, engineered pore structures and desirable stability of inorganic molecular sieve membranes, but also exhibit a high degree of freedom to create chemically rich combinations/sequences. To gain a deep insight into the intrinsic connections and characteristics of these microporous organic material-based membranes, in this review, for the first time, we propose the concept of organic molecular sieve membranes (OMSMs) with a focus on the precise construction of membrane structures and efficient intensification of membrane processes. The platform chemistries, designing principles, and assembly methods for the precise construction of OMSMs are elaborated. Conventional mass transport mechanisms are analyzed based on the interactions between OMSMs and penetrate(s). Particularly, the 'STEM' guidelines of OMSMs are highlighted to guide the precise construction of OMSM structures and efficient intensification of OMSM processes. Emerging mass transport mechanisms are elucidated inspired by the phenomena and principles of the mass transport processes in the biological realm. The representative applications of OMSMs in gas and liquid molecular mixture separations are highlighted. The major challenges and brief perspectives for the fundamental science and practical applications of OMSMs are tentatively identified.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cs01347aDOI Listing

Publication Analysis

Top Keywords

molecular sieve
12
sieve membranes
12
precise construction
12
mass transport
12
organic molecular
8
molecular separations
8
gas liquid
8
liquid molecular
8
microporous organic
8
structures efficient
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!