The early transition metal diatomic sulfides, MS, M = Sc, Y, Ti, Zr, Hf, Nb, and Ta, have been investigated using resonant two-photon ionization spectroscopy in the vicinity of their bond dissociation energies (BDEs). Due to the high density of vibronic states in this energy range, the molecular spectra appear quasicontinuous, and when the excitation energy exceeds the ground separated atom limit, excited state decay by dissociation becomes possible. The dissociation process typically occurs so rapidly that the molecule falls apart before a second photon can be absorbed to ionize the species, leading to a sharp drop in ion signal, which is identified as the 0 K BDE. The observed predissociation thresholds yield BDEs of 4.852(10) eV (ScS), 5.391(3) eV (YS), 4.690(4) eV (TiS), 5.660(4) eV (ZrS), 5.780(20) eV (HfS), 5.572(3) eV (NbS), and 5.542(3) eV (TaS). Utilizing thermochemical cycles, the enthalpies of formation, ΔH (g), of 182.7(4.3) kJ mol (ScS), 178.3(4.2) kJ mol (YS), 293.1(16.7) kJ mol (TiS), 337.3(8.4) kJ mol (ZrS), 335.0(6.6) kJ mol (HfS), 467.0(8.0) kJ mol (NbS), and 521.5(2.1) kJ mol (TaS) are obtained. Another thermochemical cycle has been used to combine the previously measured M-S BDEs with the M-S BDEs and atomic ionization energies to obtain the MS ionization energies of 6.44(5) eV (ScS), 6.12(8) eV (YS), 6.78(7) eV (TiS), 6.60(10) eV (ZrS), and 6.88(9) eV (NbS). Using this same cycle, we obtain D(Hf-S) = 4.926(20) eV. The bonding trends of the early transition metal sulfides, along with the corresponding selenides, are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0009132 | DOI Listing |
Zool Res
January 2025
School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao, Shandong, 266071, China. E-mail:
Iron is the most abundant transition metal in the brain and is essential for brain development and neuronal function; however, its abnormal accumulation is also implicated in various neurological disorders. The olfactory bulb (OB), an early target in neurodegenerative diseases, acts as a gateway for environmental toxins and contains diverse neuronal populations with distinct roles. This study explored the cell-specific vulnerability to iron in the OB using a mouse model of intranasal administration of ferric ammonium citrate (FAC).
View Article and Find Full Text PDFChem Sci
January 2025
Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
Acentric crystalline materials are the cornerstone of numerous cutting-edge technologies and have been highly sought-after, but they are difficult to construct controllably. Herein, by introducing a new p-block element to break the symmetrical environment of the d transition metal in the centric matrix TiTeO, a novel acentric tellurite sulfate, namely Ti(TeO)(SO), was successfully constructed. In its structure, two types of p-block element-centered oxo-anionic groups, [TeO] and [SO], endow [TiO] with an out-of-center distortion along the local C[111] direction, which is rare in titanium oxides containing a lone-pair cation.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Purpose: The purpose of this study is to develop an innovative solution for chronic wounds in high-mobility areas, such as joints, where conventional treatments are hindered by passive healing mechanisms and the need for immobilization. By designing a micro-electro-Nanofiber dressing composed of piezoelectric polyvinylidene fluoride (PVDF) integrated with antimicrobial silver nanoparticles (AgNPs), this research aims to address the dual challenges of promoting effective wound healing and maintaining joint mobility.
Methods: Herein, we developed a novel micro-electro-Nanofiber dressing using electrospinning technology, incorporating polyvinylidene fluoride (PVDF) with silver nanoparticles (AgNPs).
Nanoscale Adv
January 2025
Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5, 12116, Prague 2 Czech Republic
Heterostructuring of two-dimensional materials offers a robust platform to precisely tune optoelectronic properties through interlayer interactions. Here we achieved a strong interlayer coupling in a double-layered heterostructure of sulfur isotope-modified adjacent MoS monolayers two-step chemical vapor deposition growth. The strong interlayer coupling in the MoS(S)/MoS(S) was affirmed by low-frequency shear and breathing modes in the Raman spectra.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
The fused heterocycle 1-(imidazo[5,1-a]isoquinolin-3-yl)naphthalen-2-ol (LH) has been synthesized and characterized by spectroscopic methods. Probe LH upon irradiation with λ = 336 nm exhibited strong fluorescence with λ = 437 nm in MeOH/HEPES buffer (5 mM, pH = 7.4, 2:8, v/v).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!