Background: Recurrent locally advanced or metastatic head and neck squamous cell carcinoma (HNSCC) is associated with dismal prognosis because of its highly invasive behavior and resistance to conventional intensive chemotherapy. The identification of effective markers for early diagnosis and prognosis is important for reducing mortality and ensuring that therapy for HNSCC is effective. Proteasome 26S subunit, non-ATPase 7 (PSMD7) is an ATP-independent component of the 19S regulatory subunit. The prognostic value of PSMD7 and the association with immune infiltration in HNSCC remains unclear.
Methods: The Sangerbox, Oncomine, UALCAN and Human Protein Atlas (HPA) databases were used to examine PSMD7 expression profiles in HNSCC. The CVCDAP was used to analysis the association of PSMD7 with the prognosis of patients with HNSCC. The mechanism was investigated with gene set enrichment analysis (GSEA). The association between expression of PSMD7 and immune infiltration in HNSCC was investigated using the Tumor Immune Estimation Resource (TIMER), TISIDB database and CIBERSORT algorithm.
Results: PSMD7 expression was significantly up-regulated in HNSCC compared with relative normal tissues. In addition, up-regulated PSMD7 expression was associated with various clinicopathological parameters. High expression of PSMD7 suggested inferior survival of HNSCC patients. GSEA and CERES score indicated that PSMD7 was closely correlated with tumor-related signaling pathways and cell survival. Functional analyses revealed that PSMD7 was positively correlated with various infiltration levels. Moreover, PSMD7 influenced the prognosis of HNSCC patients partially via immune infiltration.
Conclusion: Our findings suggest that PSMD7 is associated poor prognosis in patients with HNSCC and plays an important role in tumor-related immune infiltration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990087 | PMC |
http://dx.doi.org/10.1042/BSR20203829 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!