A combination of in situ XANES, temperature programmed oxidation, kinetic and density functional theory results demonstrate that the d-band centers (ε) of Au and Pt metals are upshifted when 39.9 V m of electric field is applied. This leads to the enhancement of the adsorption strength of CO on both metals, and, thus, results in the promotion (+15%) and the depression (-23%) of CO conversions on Au and Pt, respectively, in the CO oxidation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cc06979e | DOI Listing |
Small
January 2025
School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
Intrinsic low conductivity, poor structural stability, and narrow interlayer spacing limit the development of MnO in sodium-ion (Na) supercapacitors. This work constructs the hollow cubic Mn-PBA precursor through an ion-exchange process to in situ obtain a hollow cubic H-Ni-MnO composite with Ni doping and oxygen vacancies (O) via a self-oxidation strategy. Experiments and theoretical calculations show that the hollow nanostructure and the expanding interlayer spacing induced by Ni doping are beneficial for exposing more reactive sites, synergistically manipulating the Na transport pathways.
View Article and Find Full Text PDFLife Sci
December 2024
Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia. Electronic address:
Aims: Cancer cachexia affects up to 80 % of patients with advanced cancer and accounts for >20 % of all cancer-related deaths. Sarcolemmal localization of dystrophin, a key protein within the dystrophin-glycoprotein complex (DGC), is perturbed in multiple muscle wasting conditions, including cancer cachexia, indicating a potential role for dystrophin in the maintenance of muscle mass. Strategies to preserve dystrophin expression at the sarcolemma might therefore combat muscle wasting.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Huazhong University of Science and Technology, School of Chemistry and Chemical Engineering, Luoyu Road 1037, 430074, Wuhan, CHINA.
Low-iridium acid-stabilized electrocatalysts for efficient oxygen evolution reaction (OER) are crucial for the market deployment of proton exchange membrane (PEM) water electrolysis. Manipulating the in situ reconstruction of Ir-based catalysts with favorable kinetics is highly desirable but remains elusive. Herein, we propose an atomic ordering strategy to modulate the dynamic surface restructuring of catalysts to break the activity/stability trade-off.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Hunan University, College of Chemistry and Chemical Engineering, No.2 Lushan Southroad, 410000, Changsha, CHINA.
Electrocatalytic synthesis of high-value chemicals has been attracting growing interest owing to its environmentally benign reaction pathways. Among these processes, the electrocatalytic reduction of nitrate (NO3-) to ammonia (NH3), known as NO3RR, and the oxidation of 5-hydroxymethylfurfural (HMFOR) stand out as two cornerstone reactions; yet, their efficiency and selectivity pose ongoing challenges. In this study, we introduce a charge manipulation approach for the design of highly efficient electrocatalysts tailored for the simultaneous coupling of NO3RR and HMFOR.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
National University of Singapore Department of Chemistry, Department of Chemistry, 3 Science Drive 3, 117543, Singapore, SINGAPORE.
Asymmetric synthesis relies on seamless transmission of stereochemical information from a chiral reagent/catalyst to a prochiral substrate. The disruption by substrates' structural changes presents a hurdle in innovating generality-oriented asymmetric catalysis. Here, we report a strategy for substrate adaptability by exploiting a fundamental physicochemical phenomenon-ion hydration, in developing remote desymmetrization to access P-stereogenic triarylphosphine oxides and sulfides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!