Hybrids formed by DNA/RNA and graphene family nanomaterials are considered as potentially useful multifunctional agents in biosensing and nanomedicine. In this work, we study the noncovalent interaction between double-stranded (ds) RNA, polyadenylic:polyuridylic acids (poly(A:U)) and graphene oxide/graphene (GO/Gr) using UV absorption spectroscopy and molecular dynamics (MD) simulations. RNA melting showed that relatively long ds-RNA is adsorbed onto GO (at an ionic strength of [Formula: see text]) at that a large fraction of RNA maintains the duplex structure. It was revealed that this fraction decreases over long time (during a few days), indicating a slow adsorption process of the long polymer. MD simulations showed that the adsorption of duplex (rA)[Formula: see text]: (rU)[Formula: see text] or (rA)[Formula: see text]: (rU)[Formula: see text] on graphene starts with the interaction between [Formula: see text]-systems of graphene and base pairs located at a duplex tail. In contrast to relatively long duplex (rA)[Formula: see text]: (rU)[Formula: see text] which keeps parallel arrangement along the graphene surface, the shorter one ((rA)[Formula: see text]: (rU)[Formula: see text]) always adopts a perpendicular orientation relative to graphene even in case of the initial parallel orientation. It was found out that (rA)[Formula: see text]: (rU)[Formula: see text] forms the stable hybrid with graphene keeping essential fraction of the duplex, while (rA)[Formula: see text]: (rU)[Formula: see text] demonstrates the duplex unzipping into two single strands with time. The interaction energies between adenine/uracil stacked with graphene as well between nucleotides in water environment were determined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1140/epje/s10189-021-00030-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!