Notch signaling plays an important role in development and tissue homeostasis. Deregulation of Notch signaling has been implicated in multiple malignancies. Crenigacestat (LY3039478), a potent Notch inhibitor, decreases Notch signaling and its downstream biologic effects. I6F-MC-JJCD was a multicenter, nonrandomized, open-label, Phase 1b study with 5 separate, parallel dose-escalations in patients with advanced or metastatic cancer from a variety of solid tumors, followed by a dose-confirmation phase in prespecified tumor types. This manuscript reports on 3 of 5 groups. The primary objective was to determine the recommended Phase 2 dose of crenigacestat in combination with other anticancer agents (taladegib, LY3023414 [dual inhibitor of phosphoinositide 3-kinase; mechanistic target of rapamycin], or abemaciclib). Secondary objectives included evaluation of safety, tolerability, efficacy, and pharmacokinetics. Patients (N = 63) received treatment between November 2016 and July 2019. Dose-limiting toxicities occurred in 12 patients, mostly gastrointestinal (diarrhea, nausea, vomiting). The maximum-tolerated dose of crenigacestat was 25 mg in Part B (LY3023414), 50 mg in Part C (abemaciclib), and not established in Part A (taladegib) due to toxicities. Patients had at least 1 adverse event (AE) and 75.0-82.6% were ≥ Grade 3 all-causality AEs. No patient had complete or partial response. Disease control rates were 18.8% (Part B) and 26.1% (Part C). The study was terminated before dose confirmation cohorts were triggered. This study demonstrated that crenigacestat combined with different anticancer agents (taladegib, LY3023414, or abemaciclib) was poorly tolerated, leading to lowered dosing and disappointing clinical activity in patients with advanced or metastatic solid tumors. NCT02784795 and date of registration: May 27, 2016.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10637-021-01094-6DOI Listing

Publication Analysis

Top Keywords

agents taladegib
12
taladegib ly3023414
12
patients advanced
12
advanced metastatic
12
solid tumors
12
notch signaling
12
phase study
8
notch inhibitor
8
crenigacestat ly3039478
8
combination anticancer
8

Similar Publications

Notch signaling plays an important role in development and tissue homeostasis. Deregulation of Notch signaling has been implicated in multiple malignancies. Crenigacestat (LY3039478), a potent Notch inhibitor, decreases Notch signaling and its downstream biologic effects.

View Article and Find Full Text PDF

Emerging noninvasive treatments of nonmelanoma skin cancers.

Cutis

March 2020

Department of Dermatology, Mount Sinai Medical Center, New York, New York; the Department of Dermatology, SUNY Downstate Medical Center, Brooklyn; and the Department of Dermatology, New York Harbor Healthcare System, Brooklyn, USA.

Nonmelanoma skin cancer (NMSC) is the most common malignancy worldwide, and the incidence continues to increase. Originally, treatment options for NMSCs largely relied on destructive and surgical methods. Basal cell carcinomas (BCCs) and squamous cell carcinomas (SCCs) commonly are treated with cryosurgery, electrodesiccation and curettage, or more definitive surgical options.

View Article and Find Full Text PDF

Design, synthesis and biological evaluation of anthranilamide derivatives as potent SMO inhibitors.

Bioorg Med Chem

March 2020

Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

A series of anthranilamide derivatives were designed and synthesized as novel smoothened (SMO) inhibitors based on the SMO inhibitor taladegib (LY2940680), which can also inhibit the SMO-D473H mutant, via a ring-opening strategy. The phthalazine core in LY2940680 was replaced with anthranilamide, which retained the inhibitory activity towards the hedgehog (Hh) signaling pathway as evidenced by a dual luciferase reporter gene assay. Compound 12a displayed the best inhibitory activity against the Hh signaling pathway with IC value of 34.

View Article and Find Full Text PDF

Synthesis and evaluation of novel dimethylpyridazine derivatives as hedgehog signaling pathway inhibitors.

Bioorg Med Chem

July 2018

Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, PR China. Electronic address:

We report herein the design and synthesis of a series of structural modified dimethylpyridazine compounds as novel hedgehog signaling pathway inhibitors. The bicyclic phthalazine core and 4-methylamino-piperidine moiety of Taladegib were replaced with dimethylpyridazine and different azacycle building blocks, respectively. The in vitro Gli-luciferase assay results demonstrate that the new scaffold still retained potent inhibitory potency.

View Article and Find Full Text PDF

The purpose of this study was to determine a recommended phase II dose and schedule of LY2940680 (taladegib) for safe administration to patients with locally advanced/metastatic cancer. This was a phase I, multicenter, open-label study of oral LY2940680. The maximum tolerable dose (MTD) was determined using a 3+3 design, the dose was confirmed, and then treatment-naïve and previously hedgehog (Hh)-inhibitor-treated patients with basal cell carcinoma (BCC) were enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!