Although the effect of temperature on microbial growth has been widely studied, the role of proteome allocation in bringing about temperature-induced changes remains elusive. To tackle this problem, we propose a coarse-grained model of microbial growth, including the processes of temperature-sensitive protein unfolding and chaperone-assisted (re)folding. We determine the proteome sector allocation that maximizes balanced growth rate as a function of nutrient limitation and temperature. Calibrated with quantitative proteomic data for Escherichia coli, the model allows us to clarify general principles of temperature-dependent proteome allocation and formulate generalized growth laws. The same activation energy for metabolic enzymes and ribosomes leads to an Arrhenius increase in growth rate at constant proteome composition over a large range of temperatures, whereas at extreme temperatures resources are diverted away from growth to chaperone-mediated stress responses. Our approach points at risks and possible remedies for the use of ribosome content to characterize complex ecosystems with temperature variation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940435 | PMC |
http://dx.doi.org/10.1038/s41540-021-00172-y | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
BMJ Open
December 2024
Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Gentofte, Denmark.
Introduction: Previous randomised controlled trials (RCTs) have indicated a protective role of pregnancy supplementation with fish oil and high-dose vitamin D, respectively, on offspring asthma, infections and several other disorders in early childhood. However, current evidence is not considered sufficient for recommending these supplements in pregnancy. In two RCTs, we aim to investigate whether these protective effects can be confirmed in larger trials with the goal of changing clinical practice and improving child health.
View Article and Find Full Text PDFElife
December 2024
Howard Hughes Medical Institute, Stanford University, Stanford, United States.
Defining the cellular factors that drive growth rate and proteome composition is essential for understanding and manipulating cellular systems. In bacteria, ribosome concentration is known to be a constraining factor of cell growth rate, while gene concentration is usually assumed not to be limiting. Here, using single-molecule tracking, quantitative single-cell microscopy, and modeling, we show that genome dilution in cells arrested for DNA replication limits total RNA polymerase activity within physiological cell sizes across tested nutrient conditions.
View Article and Find Full Text PDFLancet Neurol
January 2025
Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
Background: Spinal cord injury results in permanent neurological impairment and disability due to the absence of spontaneous regeneration. NG101, a recombinant human antibody, neutralises the neurite growth-inhibiting protein Nogo-A, promoting neural repair and motor recovery in animal models of spinal cord injury. We aimed to evaluate the efficacy of intrathecal NG101 on recovery in patients with acute cervical traumatic spinal cord injury.
View Article and Find Full Text PDFJ Trauma Acute Care Surg
January 2025
From the Department of Surgery (S.P.C.), Institute for Regenerative Medicine (S.P.C., P.K.C., J.W.V., A.A.), and Division of Public Health Sciences, Department of Biostatistics and Data Science (D.M.K.), Wake Forest School of Medicine, Winston-Salem, North Carolina; and Department of Surgery (J.B.H.), University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.
Background: Abdominal adhesions are networks of fibrotic tissues that form between organs postoperatively. Current prophylactic strategies do not reproducibly prevent adhesive small bowel obstruction across the entire abdomen. Human placental-derived stem cells produce an anti-inflammatory secretome that has been applied to multiple fibrosing diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!