Bioenergy with carbon capture and storage (BECCS) is considered an important negative emissions (NEs) technology, but might involve substantial irrigation on biomass plantations. Potential water stress resulting from the additional withdrawals warrants evaluation against the avoided climate change impact. Here we quantitatively assess potential side effects of BECCS with respect to water stress by disentangling the associated drivers (irrigated biomass plantations, climate, land use patterns) using comprehensive global model simulations. By considering a widespread use of irrigated biomass plantations, global warming by the end of the 21st century could be limited to 1.5 °C compared to a climate change scenario with 3 °C. However, our results suggest that both the global area and population living under severe water stress in the BECCS scenario would double compared to today and even exceed the impact of climate change. Such side effects of achieving substantial NEs would come as an extra pressure in an already water-stressed world and could only be avoided if sustainable water management were implemented globally.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940422PMC
http://dx.doi.org/10.1038/s41467-021-21640-3DOI Listing

Publication Analysis

Top Keywords

biomass plantations
16
water stress
16
climate change
16
irrigation biomass
8
irrigated biomass
8
water
5
climate
5
plantations
4
plantations globally
4
globally increase
4

Similar Publications

Background: is an important cash crop in southwestern China, with soil organic carbon playing a vital role in soil fertility, and microorganisms contributing significantly to nutrient cycling, thus both of them influencing tea tree growth and development. However, existing studies primarily focus on soil organic carbon, neglecting carbon fractions, and the relationship between soil organic carbon fractions and microbial communities is unclear. Consequently, this study aims to clarify the impact of different tea planting durations on soil organic carbon fractions and microbial communities and identify the main factors influencing microbial communities.

View Article and Find Full Text PDF

Temperate grassland conversion to conifer forest destabilises mineral soil carbon stocks.

J Environ Manage

February 2025

Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom.

Tree-planting is increasingly presented as a cost-effective strategy to maximise ecosystem carbon (C) storage and thus mitigate climate change. Its success largely depends on the associated response of soil C stocks, where most terrestrial C is stored. Yet, we lack a precise understanding of how soil C stocks develop following tree planting, and particularly how it affects the form in which soil C is stored and its associated stability and resistance to climate change.

View Article and Find Full Text PDF

Soil and Site Productivity Effects on Above- and Belowground Radiata Pine Carbon Pools at Harvesting Age.

Plants (Basel)

December 2024

Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD)-ANID BASAL FB210015, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.

D. Don is the most widely planted forest species in Chile, making it crucial to understand carbon pools in adult plantations. This study aimed to evaluate the effect of soil type and site productivity on the total carbon stock in adult radiata pine plantations, considering sites with contrasting water and nutrient availability.

View Article and Find Full Text PDF

PE7-Mediated Alleviation of Phosphate Starvation and Growth Promotion of Netted Melon ( L. var. Naud.).

Microorganisms

November 2024

Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.

Members of species are able to enhance the level of available phosphorus (P) for plant absorption through mechanisms of P solubilization and mineralization. In our study, PE7 showed P-solubilizing activity in simple phosphate broth (SPB) medium, and acetic acid, iso-butyric acid, and iso-valeric acid were major organic acids responsible for the increase in soluble P and decrease in pH of SPB medium. In addition, strain PE7 released phytase on phytase-screening agar (PSA) medium, and analysis of semi-quantitative reverse transcription and polymerase chain reaction (sqRT-PCR) revealed that the gene expression was the highest at 1 day after incubation.

View Article and Find Full Text PDF

Genotypic difference in response to copper stress in upland cotton as revealed by physiological and molecular expression analyses.

BMC Plant Biol

January 2025

Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.

Article Synopsis
  • Cotton has potential for cleaning copper-polluted soil, yet its tolerance mechanisms to copper toxicity remain unclear.
  • Two cotton lines, A2304 (Cu-tolerant) and A1415 (Cu-sensitive), were studied for their morphological and physiological responses to copper excess, revealing A2304's superior antioxidant activities and lower reactive oxygen species.
  • A2304 exhibited smarter gene expression changes for copper handling, reducing active copper ion concentrations while maintaining similar overall copper uptake compared to A1415, thus potentially mitigating copper toxicity effects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!