CTCF-silenced miR-137 contributes to EMT and radioresistance in esophageal squamous cell carcinoma.

Cancer Cell Int

Department of Radiation Oncology, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Gulou District, Xuzhou, 221005, Jiangsu, China.

Published: March 2021

Background: Esophageal squamous cell carcinoma (ESCC) is one of the most malignant tumors in gastrointestinal system. MicroRNAs (miRNAs) have been reported to be implicated in cancer development. However, the role of miR-137 has not been fully revealed in ESCC.

Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analyses were separately used to examine RNA level and protein level. 5-ethynyl-2'-deoxyuridine (EdU) assay, transwell assays and flow cytometry analyses were conducted to assess biological behaviors of ESCC cells. Additionally, the interaction between genes were analyzed via Chromatin Immunoprecipitation (ChIP) assay, RNA Binding Protein Immunoprecipitation (RIP) assay, RNA pull down assay and luciferase reporter assay.

Results: MiR-137 was down-regulated in ESCC cells. Upregulation of miR-137 hindered ESCC cell proliferation, migration, invasion and epithelial mesenchymal transition (EMT). Besides, miR-137 enhanced the sensitivity of ESCC cells to irradiation. Moreover, CCCTC-binding factor (CTCF) inactivated miR-137 transcription in ESCC cells. Furthermore, we revealed enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) and paxillin (PXN) as the downstream targets of miR-137. In turn, EZH2 was recruited by CTCF and induced methylation in miR-137 promoter.

Conclusion: CTCF/Suz12/EZH2 complex-silenced miR-137 facilitates ESCC progression and radioresistance by targeting EZH2 and PXN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7938596PMC
http://dx.doi.org/10.1186/s12935-020-01740-8DOI Listing

Publication Analysis

Top Keywords

escc cells
16
esophageal squamous
8
squamous cell
8
cell carcinoma
8
mir-137
8
assay rna
8
escc
7
ctcf-silenced mir-137
4
mir-137 contributes
4
contributes emt
4

Similar Publications

Background: Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent and lethal malignancies worldwide. Despite progress in immunotherapy for cancer treatment, its application and efficacy in ESCC remain limited. Therefore, there is an ongoing need to explore potential molecules and therapeutic strategies related to tumor immunity in ESCC.

View Article and Find Full Text PDF

Solute carrier family 25 member 1 (SLC25A1) affects lipid metabolism and energy regulation in multiple types of tumor cell, affecting their proliferation and survival. To the best of our knowledge, however, the impact of SLC25A1 on the proliferation and survival of esophageal squamous cell carcinoma (ESCC) cells has yet to be explored. Here, SLC25A1 expression was detected in ESCC tissues and cell lines.

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.

View Article and Find Full Text PDF

may inhibit esophageal squamous cell carcinoma growth and metastasis by regulating the axis.

Transl Cancer Res

December 2024

Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Background: FOXF2, a member of the transcription factor FOX family proteins, plays a key role in tumorigenesis and tumor aggressiveness. However, the potential molecular mechanism of FOXF2 in esophageal squamous cell carcinoma (ESCC) remains largely unknown. Exploring its role and mechanism in ESCC progression may help identify new diagnostic markers and therapeutic targets.

View Article and Find Full Text PDF

CCN1 is a matricellular protein highly expressed in esophageal squamous cell carcinoma (ESCC) but hardly detectable in esophageal adenocarcinoma (EAC). Expression of CCN1 in EAC cells leads to TRAIL-mediated apoptosis. Unlike TRAIL, which primarily triggers cell death, APRIL and BAFF promote cell growth via NFκB signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!