Introduction: Malignant primary and secondary brain tumors pose a major health challenge, and the incidence of these tumors is rising. The brain tumor microenvironment (TME) is highly complex and thought to impact treatment resistance and failure. To enable a greater understanding of the milieu of cells in the brain TME, advances in imaging and sequential profiling of proteins/mRNA have given rise to the field of spatial transcriptomics. These technologies provide a greater depth of understanding of the tissue architecture, cellular and spatial profiles, including cellular activation status, which may provide insights into effective therapies for brain cancers.
Areas Covered: In this review, we provide an overview of spatial profiling technologies at the forefront in the field and describe the applications for brain cancer.
Expert Opinion: Brain tumors are often resistant to treatment, and display both an immunosuppressive and heterogeneous tumor microenvironment. Next-generation imaging and multi-omics technologies are providing a tool for intricately characterizing their tissue biology. This information will aid in the design of effective therapies and begin to provide an understanding of therapy resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14737159.2021.1900735 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Faculty of Geography, Lomonosov Moscow State University, 119991, Moscow, Russia.
The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.
View Article and Find Full Text PDFMethods
January 2025
School of Information Science and Engineering, Yunnan University, Kunming, 650500, Yunnan, China. Electronic address:
Spatial transcriptomics has significantly advanced the measurement of spatial gene expression in the field of biology. However, the high cost of ST limits its application in large-scale studies. Using deep learning to predict spatial gene expression from H&E-stained histology images offers a more cost-effective alternative, but existing methods fail to fully leverage the multimodal information provided by Spatial transcriptomics and pathology images.
View Article and Find Full Text PDFBMC Genomics
January 2025
Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China.
Background: The evolution and development of flowers are biologically essential and of broad interest. Maize and sorghum have similar morphologies and phylogeny while harboring different inflorescence architecture. The difference in flower architecture between these two species is likely due to spatiotemporal gene expression regulation, and they are a good model for researching the evolution of flower development.
View Article and Find Full Text PDFSci Total Environ
January 2025
Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany. Electronic address:
Agricultural management significantly affects insects, especially pollinators, which are crucial for crop pollination and biodiversity. In agricultural landscapes, various factors spanning different spatial scales are known to affect pollinator health, which, in turn, can influence pollination services. However, the importance of these factors in driving the health and performance of different pollinator groups remains unclear.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China. Electronic address:
PM has a detrimental impact on human health and has become a focus of widespread concern. The tempo-spatial distribution of emerging pollutants has been extensively studied, while there is a scarcity of understanding their vertical distribution in atmospheric environment. Here we investigated the vertical profiles of phthalate esters (PAEs), organophosphate esters (OPEs), neonicotinoids (NEOs), and per-and polyfluorinated substances (PFASs) in PM at ground level (4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!