A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unraveling the internal conversion process within the Q-bands of a chlorophyll-like-system through surface-hopping molecular dynamics simulations. | LitMetric

The non-radiative relaxation process within the Q-bands of chlorophylls represents a crucial preliminary step during the photosynthetic mechanism. Despite several experimental and theoretical efforts performed in order to clarify the complex dynamics characterizing this stage, a complete understanding of this mechanism is still far to be reached. In this study, non-adiabatic excited-state molecular dynamic simulations have been performed to model the non-radiative process within the Q-bands for a model system of chlorophylls. This system has been considered in the gas phase and then, to have a more representative picture of the environment, with implicit and mixed implicit-explicit solvation models. In the first part of this analysis, absorption spectra have been simulated for each model in order to guide the setup for the non-adiabatic excited-state molecular dynamic simulations. Then, non-adiabatic excited-state molecular dynamic simulations have been performed on a large set of independent trajectories and the population of the Q and Q states has been computed as the average of all the trajectories, estimating the rate constant for the process. Finally, with the aim of investigating the possible role played by the solvent in the Q-Q crossing mechanism, an essential dynamic analysis has been performed on the generated data, allowing one to find the most important motions during the simulated dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0039949DOI Listing

Publication Analysis

Top Keywords

process q-bands
12
non-adiabatic excited-state
12
excited-state molecular
12
molecular dynamic
12
dynamic simulations
12
simulations performed
8
unraveling internal
4
internal conversion
4
process
4
conversion process
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!