A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of complex particle mixtures by asymmetrical flow field-flow fractionation coupled to inductively coupled plasma time-of-flight mass spectrometry. | LitMetric

Asymmetrical flow field-flow fractionation (AF4) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS) has been widely used to characterize metal containing particles. This study demonstrates the advantages of coupling AF4 with ICP-time-of-flight mass spectrometry (ICP-TOFMS) in standard and single particle modes to determine size distribution, elemental composition, and number concentration of composite particles. The coupled system was used to characterize two complex particle mixtures. The first mixture consisted of particles extracted from micro-alloyed steels with two size populations of different elemental composition. The second mixture consisted of particles extracted from soil spiked with various engineered nanoparticles (ENPs). The equivalent hydrodynamic sizes of individual micro-alloyed steel particles were up to 6 times larger than the sizes determined by single particle (sp)-ICP-TOFMS. The larger AF4 sizes were attributed to the presence of a surface coating, which is not reflected in the core size determined by sp-ICP-TOFMS. Two particle populations could not be separated by AF4 due to their broad size distributions but were resolved by sp-ICP-TOFMS using their unique elemental signatures. Multi-angle light scattering and ICP-TOFMS signals of soil suspensions increased with the spiked ENP concentrations. However, only after conducting full element screening and single particle fingerprinting by ICP-TOFMS could this increase be attributed to enhanced extraction efficiency of natural particles and the risk for false conclusions be eliminated. In this study, we describe how AF4 coupled to ICP-TOFMS can be applied to study complex samples of inorganic particles which contain organic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2021.461981DOI Listing

Publication Analysis

Top Keywords

single particle
12
complex particle
8
particle mixtures
8
asymmetrical flow
8
flow field-flow
8
field-flow fractionation
8
inductively coupled
8
mass spectrometry
8
elemental composition
8
mixture consisted
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!