Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The oily waste generated from the cleanup operations during shoreline spill response can result in challenging environmental and socioeconomic problems. In this study, an inexact inventory-theory-based optimization model (ITOM) for oily waste management during shoreline spill response was developed to support the spill management team. The most appropriate facilities and optimal waste allocation scheme under uncertainty can be selected to achieve minimum total system cost. To satisfy the demand of oily waste treatment, these oily waste management facilities can be selectively opened depending on the situation. In the combination with the economic order quantity model of inventory theory, the developed model can provide the optimal solutions of batch size and order cycle for treatment facilities to minimize the inventory cost. A case study was used to demonstrate the application of ITOM. The obtained solutions include the facilities selection and waste allocation for waste collection and destocking stages under different risk levels. These solutions can provide a good guideline with managers to analyze the trade-offs between system cost and constraint-violation risks. The developed model has high application potential as a job-aid tool to manage the oily waste generated from oiled shoreline cleanup operations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.146078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!