Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To enable effective reuse and recycling processes of spent lithium-ion batteries (LiBs), here we develop a novel electrical method based on a high-voltage pulsed discharge to separate cathode particles and aluminum (Al) foil. A cathode particle sample was mechanically separated from a LiB, cut into 30-mm × 80-mm test pieces, and subjected to a high-voltage electrical pulse discharge from either end in water. At a voltage of 25 kV, 93.9% of the cathode particles separated from the Al foil. These particles were easily recovered by sieving at 2.36 mm because the Al foil retained its shape. Some Al contaminated the particles owing to generation of hot plasma and subsequent shock waves; however, the Al concentration in the recovered cathode particles was limited to 2.95%, which is low enough to allow for further cobalt and nickel recovery by hydrometallurgical processing. The results of heat balance calculations obtained from the current waveforms suggested that polyvinylidene fluoride, the main component of the adhesive in the cathode particle layers, melted and lost its adhesion through Joule heating of the Al foil at the maximum current of 19.0 kA at 25 kV. Almost 99% of the recovered cathode particles maintained their chemical composition and form after separation, and therefore could potentially be directly reused in LiBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2021.01.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!