Stable isotopes of C and N have been used to assess the effect of the duration of the sea ice season on the structure of benthic, Antarctic coastal food webs. Samples of suspended particulate organic matter, macroalgae and macroinvertebrates were collected at five subtidal rocky sites across a latitudinal gradient along the western Antarctic Peninsula and among the South Shetland Islands. We tested the hypotheses that trophic positions of omnivores decrease, and food web structure becomes more redundant at higher latitudes. A latitudinal shift in the isotope baseline was detected for both δC and δN, but the trophic positions of macroinvertebrates and their relative positions along the δC axis and were basically constant across sites, even after rescaling stable isotope ratios to account for shifts in the baseline. Although the northernmost and southernmost study sites differed significantly in most of the metrics of the food web structure, changes with latitude and the duration of the sea ice season were non-monotonic. Highly productive phytoplankton blooms during the ice-free season at Esperanza Bay and Rothera Point may explain the observed pattern, as they result in a massive supply of planktonic organic matter to the detritus bank in the seabed and, hence, shorten the C range and increase trophic redundancy. If this hypothesis is correct, the intensity of the summer phytoplankton bloom can be as relevant for the structure of the benthic marine food web as the duration of the sea ice season.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2021.105290 | DOI Listing |
Sci Rep
January 2025
Department of Biology, Boston University, Boston, MA, USA.
Spatial changes in benthic community structure have been observed across natural gradients in deep-sea ecosystems, but these patterns remain under-sampled on seamounts. Here, we identify the spatial composition and distribution of coral and sponge taxa on four sides of a single central Pacific equatorial "model" seamount within the US EEZ surrounding the Howland and Baker unit of the Pacific Islands Heritage Marine National Monument. This seamount rises from 5,000 + m to mesophotic depths of 196 m, and is influenced by the Equatorial Undercurrent.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada. Electronic address:
Wild-caught fish are an important subsistence food source in remote northern regions, but they can also be a source of exposure to mercury (Hg), which has known health hazards. We investigated factors and mechanisms that control variability of Hg concentrations in Lake Whitefish (Coregonus clupeaformis) among remote subarctic lakes in Northwest Territories, Canada. Integrating variables that reflect fish ecology, in-lake conditions, and catchment attributes, we aimed to not only determine factors that best explain among-lake variability of fish Hg, but also to provide a whole-ecosystem understanding of interactions that drive among-lake variability of fish Hg.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
Hydrodynamic conditions influenced by river sinuosity may alter carbon (e.g., carbon dioxide and methane) emissions and microbial communities responsible for nutrient turnover.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, University of Bergen, Bergen, Norway.
Sponges are key ecosystem engineers that shape, structure and enhance the biodiversity of marine benthic communities globally. Sponge aggregations and reefs are recognized as vulnerable marine ecosystems (or VMEs) due to their susceptibility to damage from bottom-contact fishing gears. Ensuring their long-term sustainability, preservation, and ecosystem functions requires the implementation of sound scientific conservation tools.
View Article and Find Full Text PDFZookeys
December 2024
Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA.
Solenogastres is a group of mollusks with evolutionary and ecological importance. Nevertheless, their diversity is underestimated and knowledge about the distribution of the approximately 300 formally described species is limited. Factors that contribute to this include their small size and frequent misidentification by non-specialists.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!