Attention Deficit Hyperactive Disorder (ADHD) is a common neurobehavioral disorder with a significant and pervasive impact on patients' lives. Identifying neurophysiological correlates of ADHD is important for understanding its underlying mechanisms, as well as for improving clinical accuracy beyond cognitive and emotional factors. The present study focuses on finding a diagnostic stable neural correlate based on evaluating MEG resting state frequency bands. Twenty-two ADHD patients and 23 controls adults were blindly randomized to two methylphenidate/placebo evaluation days. On each evaluation day state anxiety was assessed, a 2N-back executive function task was performed, and resting state MEG brain activity was recorded at three timepoints. A frequency-based cluster analysis yielded higher high-gamma power for ADHD over posterior sensors and lower high-gamma power for ADHD over frontal-central sensors. These results were shown to be stable over three measurements, unaffected by methylphenidate treatment, and linked to cognitive accuracy and state anxiety. Furthermore, the differential high-gamma activity evidenced substantial ADHD diagnostic efficacy, comparable to the cognitive and emotional factors. These results indicate that resting state high-gamma activity is a promising, stable, valid and diagnostically-relevant neurocorrelate of ADHD. Due to the evolving understanding both in the cellular and network level of high-gamma oscillations, focusing future studies on this frequency band bears the potential for a better understanding of ADHD, thus advancing the specificity of the evaluation of the disorder and developing new tools for therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpsychires.2021.02.050 | DOI Listing |
J Appl Physiol (1985)
January 2025
Department of Human Physiology, Gonzaga University, Spokane, Washington, United States.
We tested the hypothesis that power at maximal metabolic steady state is similar between fitness matched men and women. Eighteen participants (9 men, 9 women) performed a cycling graded exercise test for maximal oxygen consumption (V̇O). Men and women were matched for V̇O normalized to fat free mass (FFM), which was 50.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry, University of California, Berkeley, CA 94720.
Copper is an essential nutrient for sustaining vital cellular processes spanning respiration, metabolism, and proliferation. However, loss of copper homeostasis, particularly misregulation of loosely bound copper ions which are defined as the labile copper pool, occurs in major diseases such as cancer, where tumor growth and metastasis have a heightened requirement for this metal. To help decipher the role of copper in the etiology of cancer, we report a histochemical activity-based sensing approach that enables systematic, high-throughput profiling of labile copper status across many cell lines in parallel.
View Article and Find Full Text PDFBrain
January 2025
U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Neuropresage Team; INSERM, University of Caen Normandy; GIP Cyceron, 14000 Caen, France.
Curing Alzheimer's disease remains hampered by an incomplete understanding of its pathophysiology and progression. Exploring dysfunction in medial temporal lobe networks, particularly the anterior-temporal (AT) and posterior-medial (PM) systems, may provide key insights, as these networks exhibit functional connectivity alterations along the entire Alzheimer's continuum, potentially influencing disease propagation. However, the specific changes in each network and their clinical relevance across stages are not yet fully understood.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.
Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.
View Article and Find Full Text PDFCurr Pain Headache Rep
January 2025
Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Entrance 1A, 2600 Glostrup, Copenhagen, Denmark.
Purpose Of Review: To evaluate existing functional magnetic resonance imaging (fMRI) studies on post-traumatic headache (PTH) following traumatic brain injury (TBI).
Recent Findings: We conducted a systematic search of PubMed and Embase databases from inception to February 1, 2024. Eligible fMRI studies were required to include adult participants diagnosed with acute or persistent PTH post-TBI in accordance with any edition of the International Classification of Headache Disorders.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!