Residual Neural Network precisely quantifies dysarthria severity-level based on short-duration speech segments.

Neural Netw

Instituto de Biociências, Letras e Ciências Exatas, Unesp - Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd Nazareth, 15054-000, São José do Rio Preto - SP, Brazil. Electronic address:

Published: July 2021

Recently, we have witnessed Deep Learning methodologies gaining significant attention for severity-based classification of dysarthric speech. Detecting dysarthria, quantifying its severity, are of paramount importance in various real-life applications, such as the assessment of patients' progression in treatments, which includes an adequate planning of their therapy and the improvement of speech-based interactive systems in order to handle pathologically-affected voices automatically. Notably, current speech-powered tools often deal with short-duration speech segments and, consequently, are less efficient in dealing with impaired speech, even by using Convolutional Neural Networks (CNNs). Thus, detecting dysarthria severity-level based on short speech segments might help in improving the performance and applicability of those systems. To achieve this goal, we propose a novel Residual Network (ResNet)-based technique which receives short-duration speech segments as input. Statistically meaningful objective analysis of our experiments, reported over standard Universal Access corpus, exhibits average values of 21.35% and 22.48% improvement, compared to the baseline CNN, in terms of classification accuracy and F1-score, respectively. For additional comparisons, tests with Gaussian Mixture Models and Light CNNs were also performed. Overall, the values of 98.90% and 98.00% for classification accuracy and F1-score, respectively, were obtained with the proposed ResNet approach, confirming its efficacy and reassuring its practical applicability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2021.02.008DOI Listing

Publication Analysis

Top Keywords

speech segments
16
short-duration speech
12
dysarthria severity-level
8
severity-level based
8
detecting dysarthria
8
classification accuracy
8
accuracy f1-score
8
speech
6
residual neural
4
neural network
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!