The concomitant presence of two distinctive polypeptide modules, which we have chosen to denominate as the "Y-junction" and the "flavin" module, is observed in 3D structures of enzymes as functionally diverse as complex I, NAD(P)-dependent [NiFe]-hydrogenases and NAD(P)-dependent formate dehydrogenases. Amino acid sequence conservation furthermore suggests that both modules are also part of NAD(P)-dependent [FeFe]-hydrogenases for which no 3D structure model is available yet. The flavin module harbours the site of interaction with the substrate NAD(P) which exchanges two electrons with a strictly conserved flavin moiety. The Y-junction module typically contains four iron-sulphur centres arranged to form a Y-shaped electron transfer conduit and mediates electron transfer between the flavin module and the catalytic units of the respective enzymes. The Y-junction module represents an electron transfer hub with three potential electron entry/exit sites. The pattern of specific redox centres present both in the Y-junction and the flavin module is correlated to present knowledge of these enzymes' functional properties. We have searched publicly accessible genomes for gene clusters containing both the Y-junction and the flavin module to assemble a comprehensive picture of the diversity of enzymes harbouring this dyad of modules and to reconstruct their phylogenetic relationships. These analyses indicate the presence of the dyad already in the last universal common ancestor and the emergence of complex I's EFG-module out of a subgroup of NAD(P)- dependent formate dehydrogenases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2021.148401 | DOI Listing |
Biomed Phys Eng Express
September 2024
Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai-600036, Chennai, Tamil Nadu, 600036, INDIA.
The heterogeneity, non-uniform nature, and ethical concerns in sourcing biological tissues pose several challenges to designing, calibrating, standardizing, and evaluating the performance of spectroscopy-based diagnostic methods. A synthetic phantom module that can resemble a multi-layered tissue structure while including multiple tissue biomarkers with long-shelf life and stability is vital to overcome these challenges. This work uses a multi-layered silicone phantom to incorporate multiple biomarkers suitable for multi-modal spectroscopy testing and calibration.
View Article and Find Full Text PDFDespite the increasing demand for efficient and sustainable chemical processes, the development of scalable systems using biocatalysis for fine chemical production remains a significant challenge. We have developed a scalable flow system using immobilized enzymes to facilitate flavin-dependent biocatalysis, targeting as a proof-of-concept asymmetric alkene reduction. The system integrates a flavin-dependent Old Yellow Enzyme (OYE) and a soluble hydrogenase to enable H-driven regeneration of the OYE cofactor FMNH.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK.
The delineation of the complex biosynthesis of the potent antibiotic mupirocin, which consists of a mixture of pseudomonic acids (PAs) isolated from Pseudomonas fluorescens NCIMB 10586, presents significant challenges, and the timing and mechanisms of several key transformations remain elusive. Particularly intriguing are the steps that process the linear backbone from the initial polyketide assembly phase to generate the first cyclic intermediate PA-B. These include epoxidation as well as incorporation of the tetrahydropyran (THP) ring and fatty acid side chain required for biological activity.
View Article and Find Full Text PDFIUCrJ
September 2024
Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093 Zürich, Switzerland.
Light-oxygen-voltage (LOV) domains are small photosensory flavoprotein modules that allow the conversion of external stimuli (sunlight) into intracellular signals responsible for various cell behaviors (e.g. phototropism and chloroplast relocation).
View Article and Find Full Text PDFmLife
March 2024
State Key Laboratory of Genetic Engineering, School of Life Sciences Fudan University Shanghai China.
is a food-safe yeast with great potential for producing heterologous proteins. Improving the yield in remains a challenge and incorporating large-scale functional modules poses a technical obstacle in engineering. To address these issues, linear and circular yeast artificial chromosomes of (KmYACs) were constructed and loaded with disulfide bond formation modules from or .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!