Gradient Forests (GF) is a machine learning algorithm that is gaining in popularity for studying the environmental drivers of genomic variation and for incorporating genomic information into climate change impact assessments. Here we (i) provide the first experimental evaluation of the ability of "genomic offsets" - a metric of climate maladaptation derived from Gradient Forests - to predict organismal responses to environmental change, and (ii) explore the use of GF for identifying candidate SNPs. We used high-throughput sequencing, genome scans, and several methods, including GF, to identify candidate loci associated with climate adaptation in balsam poplar (Populus balsamifera L.). Individuals collected throughout balsam poplar's range also were planted in two common garden experiments. We used GF to relate candidate loci to environmental gradients and predict the expected magnitude of the response (i.e., the genetic offset metric of maladaptation) of populations when transplanted from their "home" environment to the common gardens. We then compared the predicted genetic offsets from different sets of candidate and randomly selected SNPs to measurements of population performance in the common gardens. We found the expected inverse relationship between genetic offset and performance: populations with larger predicted genetic offsets performed worse in the common gardens than populations with smaller offsets. Also, genetic offset better predicted performance than did "naive" climate transfer distances. However, sets of randomly selected SNPs predicted performance slightly better than did candidate SNPs. Our study provides evidence that genetic offsets represent a first order estimate of the degree of expected maladaptation of populations exposed to rapid environmental change and suggests GF may have some promise as a method for identifying candidate SNPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-0998.13374 | DOI Listing |
J Comput Chem
January 2025
Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
Cyclooxygenase-2 (COX-2) is an enzyme that plays a crucial role in inflammation by converting arachidonic acid into prostaglandins. The overexpression of enzyme is associated with conditions such as cancer, arthritis, and Alzheimer's disease (AD), where it contributes to neuroinflammation. In silico virtual screening is pivotal in early-stage drug discovery; however, the absence of coding or machine learning expertise can impede the development of reliable computational models capable of accurately predicting inhibitor compounds based on their chemical structure.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Urology, Health Science University Eskisehir City Health Application and Research Center, 26080 Eskisehir, Turkey.
To establish a machine learning (ML) model for predicting prostate biopsy outcomes using prostate-specific antigen (PSA) values, multiparametric magnetic resonance imaging (mpMRI) findings, and hematologic parameters. The medical records of the patients who had undergone a prostate biopsy were evaluated. Laboratory findings, mpMRI findings, and prostate biopsy results were collected.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Departamento de Geografía, Facultad de Ciencias, Universidad de la República, Montevideo 4225, Uruguay.
Recent advancements in Earth Observation sensors, improved accessibility to imagery and the development of corresponding processing tools have significantly empowered researchers to extract insights from Multisource Remote Sensing. This study aims to use these technologies for mapping summer and winter Land Use/Land Cover features in Cuenca de la Laguna Merín, Uruguay, while comparing the performance of Random Forests, Support Vector Machines, and Gradient-Boosting Tree classifiers. The materials include Sentinel-2, Sentinel-1 and Shuttle Radar Topography Mission imagery, Google Earth Engine, training and validation datasets and quoted classifiers.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Next Generation Information Center, Kangwon National University Hospital, Chuncheon 24289, Republic of Korea.
Gastric cancer is a leading cause of cancer-related mortality, particularly in East Asia, with a notable burden in Republic of Korea. This study aimed to construct and develop machine learning models for the prediction of gastric cancer mortality and the identification of risk factors. All data were acquired from the Korean Clinical Data Utilization for Research Excellence by multiple medical centers in South Korea.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Family Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan.
: The prevalence of diabetes is increasing worldwide, particularly in the Pacific Ocean island nations. Although machine learning (ML) models and data mining approaches have been applied to diabetes research, there was no study utilizing ML models to predict diabetes incidence in Taiwan. We aimed to predict the onset of diabetes in order to raise health awareness, thereby promoting any necessary lifestyle modifications and help mitigate disease burden.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!