Greedy individuals often exhibit more impulsive decision-making and short-sighted behaviors. It has been assumed that altered reward circuitry and prospection network is associated with greed personality trait (GPT). In this study, we first explored the morphological characteristics (i.e., gray matter volume; GMV) of GPT combined with univariate and multivariate pattern analysis (MVPA) approaches. Second, we adopted a revised version of inter-temporal choice task and independently manipulated the amount and delay time of future rewards. Using brain-imaging design, reward- and prospection-related brain activations were assessed and their associations with GPT were further examined. The MVPA results showed that GPT was associated with the GMVs in the right lateral frontal pole cortex, left ventromedial prefrontal cortex, right lateral occipital cortex, and right occipital pole. Additionally, we observed that the amount-relevant brain activations (responding to reward circuitry) in the lateral orbitofrontal cortex were negatively associated with individual's variability in GPT scores, whereas the delay time-relevant brain activations (responding to prospection network system) in the dorsolateral prefrontal cortex, dorsomedial prefrontal cortex, superior parietal lobule, and anterior cingulate cortex were positively associated with individual's variability in GPT scores. These findings not only provide novel insights into the neuroanatomical substrates underlying the human dispositional greed, but also suggest the critical roles of reward and prospection processing on the greed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00429-021-02240-9 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Cancer Biology & Genetics Program, Sloan Kettering Institute, New York, NY 10065.
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.
The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
Major depressive disorder (MDD) is usually considered associate with immune inflammation and synaptic injury within specific brain regions. However, the molecular mechanisms underlying the neural deterioration resulting in depression remain unclear. Here, it is found that miR-204-5p is markedly downregulated in the ventromedial prefrontal cortex (vmPFC) in a chronic unpredictable mild stress (CUMS) induce rat model of depression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!