Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Constant pressure pumps are an invaluable yet underutilized resource for microfluidic flow systems. In particular, constant pressure pumps are able to stabilize the fluid pressure in systems where the viscosity may change due to chemical reactions or the flow rate may vary due to deformations of the channels. The constant pressure pump presented here is designed on the premise of creating and maintaining a pressure differential between the laboratory and a pressure reservoir. This pressure reservoir is then used to drive the input fluid at the specified gauge pressure. The pump design presented here is perfect for primarily undergraduate institutions and other laboratories with modest research budgets as it can be built for under US$100 and construction is within the scope of an advanced undergraduate. The pump consists of an Arduino-compatible microcontroller, Adafruit electronic components, low-voltage air pump, Nalgene water bottle, and various fluid components. A complete parts list is included in the appendix. Comparable commercial pumps have a retail price in excess of US$5000. Multiple pump designs were constructed and tested with the ability to hold a constant pressure of up to 14 psig (97 kPa-gauge) with a maximum flow rate of 65 [Formula: see text]L/s for water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1140/epje/s10189-020-00002-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!