Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Circular RNAs (circRNAs) are dynamically regulated during differentiation and show cell type-specific expression, which is altered in cancer and can have a direct impact on its various hallmarks. We hypothesized that circRNA expression is deregulated in acute myeloid leukemia (AML) and that circRNA candidates might contribute to the pathogenesis of the disease. To identify leukemia-associated and differentiation-independent changes in circRNA expression, we determined the circular RNAome of 61 AML patients and 16 healthy hematopoietic stem and progenitor cell (HSPC) samples using ribosomal RNA-depleted RNA sequencing. We found hundreds of circRNAs that were differentially expressed between AML and healthy HSPCs. Gene set analysis found that many of these circRNAs were transcribed from genes implicated in leukemia biology. We discovered a circRNA derived from the T-cell transcription factor gene B cell CLL/lymphoma 11B, circBCL11B, which was exclusively expressed in AML patients, but not detected in healthy HSPCs, and associated with a T-cell-like gene expression signature. We were able to validate this finding in an independent cohort of 332 AML patients. Knockdown of circBCL11B had a negative effect on leukemic cell proliferation and resulted in increased cell death of leukemic cells, thereby suggesting circBCL11B as a novel functionally relevant candidate in AML pathogenesis. In summary, our study enables comprehensive insights into circRNA expression changes upon leukemic transformation and provides valuable information on the biology of leukemic cells and potential novel pathway dependencies that are relevant for AML therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7948263 | PMC |
http://dx.doi.org/10.1182/bloodadvances.2020003230 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!