What can we learn from outliers in cardiac surgery?

J Card Surg

Department of Surgery and Cancer, Imperial College London, London, UK.

Published: June 2021

Download full-text PDF

Source
http://dx.doi.org/10.1111/jocs.15481DOI Listing

Publication Analysis

Top Keywords

learn outliers
4
outliers cardiac
4
cardiac surgery?
4
learn
1
cardiac
1
surgery?
1

Similar Publications

Transfer learning aims to integrate useful information from multi-source datasets to improve the learning performance of target data. This can be effectively applied in genomics when we learn the gene associations in a target tissue, and data from other tissues can be integrated. However, heavy-tail distribution and outliers are common in genomics data, which poses challenges to the effectiveness of current transfer learning approaches.

View Article and Find Full Text PDF

This study applies the Gaussian process progression model, a Bayesian data-driven disease progression model, to analyse the evolution of primary progressive multiple sclerosis. Utilizing data from 1521 primary progressive multiple sclerosis participants collected within the International Progressive Multiple Sclerosis Alliance Project, the analysis includes 18 581 longitudinal time-points (average follow-up time: 28.2 months) of disability assessments including the expanded disability status scale, symbol digit modalities, timed 25-foot-walk, 9-hole-peg test and of MRI metrics such as T1 and T2 lesion volume and normalized brain volume.

View Article and Find Full Text PDF

Next-generation diabetes diagnosis and personalized diet-activity management: A hybrid ensemble paradigm.

PLoS One

January 2025

Department of Information Systems, College of Computer Sciences and Information Technology (CCSIT), King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia.

Diabetes, a chronic metabolic condition characterised by persistently high blood sugar levels, necessitates early detection to mitigate its risks. Inadequate dietary choices can contribute to various health complications, emphasising the importance of personalised nutrition interventions. However, real-time selection of diets tailored to individual nutritional needs is challenging because of the intricate nature of foods and the abundance of dietary sources.

View Article and Find Full Text PDF

The bcc coating of Lennard-Jones crystal nuclei vanishes with a change of local structure detection algorithm.

J Chem Phys

January 2025

Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.

Since the influential work of ten Wolde, Ruiz-Montero, and Frenkel [Phys. Rev. Lett.

View Article and Find Full Text PDF

In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!