Three-dimensional (3D) in vitro models of skeletal muscle are a valuable advancement in biomedical research as they afford the opportunity to study skeletal muscle reformation and function in a scalable format that is amenable to experimental manipulations. 3D muscle culture systems are desirable as they enable scientists to study skeletal muscle ex vivo in the context of human cells. 3D in vitro models closely mimic aspects of the native tissue structure of adult skeletal muscle. However, their universal application is limited by the availability of platforms that are simple to fabricate, cost and user-friendly, and yield relatively high quantities of human skeletal muscle tissues. Additionally, since skeletal muscle plays an important functional role that is impaired over time in many disease states, an experimental platform for microtissue studies is most practical when minimally invasive calcium transient and contractile force measurements can be conducted directly within the platform itself. In this protocol, the fabrication of a 96-well platform known as 'MyoTACTIC', and en masse production of 3D human skeletal muscle microtissues (hMMTs) is described. In addition, the methods for a minimally invasive application of electrical stimulation that enables repeated measurements of skeletal muscle force and calcium handling of each microtissue over time are reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/62307 | DOI Listing |
Intern Emerg Med
January 2025
Central Laboratory of Clinical Biology, Frantz Fanon Hospital, University Hospital Center of Blida, 9000, Blida, Algeria.
The aim was to estimate the prevalence of low muscle mass (LMM) and low muscle mass associated with obesity (LMM-O) in healthy adult, and to verify the performance of raw bioelectrical impedance parameters (BIA) and vector analysis (BIVA) in the screening of this tow conditions. This is a cross-sectional study including 1025 healthy adults. Body composition was assessed by the BIA technique.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology and Neurosciences, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain.
Background: Alpha-actinin-2, a protein with high expression in cardiac and skeletal muscle, is located in the Z-disc and plays a key role in sarcomere stability. Mutations in ACTN2 have been associated with both hypertrophic and dilated cardiomyopathy and, more recently, with skeletal myopathy.
Methods: Genetic, clinical, and muscle imaging data were collected from 37 patients with an autosomal dominant ACTN2 myopathy belonging to 11 families from Spain and Belgium.
J Neurol
January 2025
Department of Neurology, School of Medical Sciences, University of Campinas-UNICAMP, Universitaria "Zeferino Vaz", Rua Tessália Vieira de Camargo, 126. Cidade, Campinas, SP, 13083-887, Brazil.
Background: Skeletal and cardiac muscle damage have been increasingly recognized in female carriers of DMD pathogenic variants (DMDc). Little is known about cognitive impairment in these women or whether they have structural brain damage.
Objective: To characterize the cognitive profile in a Brazilian cohort of DMDc and determine whether they have structural brain abnormalities using multimodal MRI.
Eur Spine J
January 2025
Department of Orthopaedics, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan.
Purpose: The effect of skeletal muscle mass of the trunk and extremities on sagittal imbalance of the spine before and after surgery for adult spinal deformity (ASD) has not been elucidated. The purpose of this study was to examine the correlation between reduced skeletal muscle mass of the trunk and extremities, as well as spinopelvic parameters, preoperatively, postoperatively and at least 2 years after surgery for ASD.
Methods: This retrospective observational study included 140 consecutive patients who had undergone surgery for ASD and were followed-up for at least 2 years and whose skeletal muscle mass could be measured preoperatively using whole-body dual-energy X-ray absorptiometry.
Funct Integr Genomics
January 2025
Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA.
Large-scale, pan-cancer analysis is enabled by data driven knowledge bases that link tumor molecular profiles with phenotypes. A debilitating cancer-related phenotype is skeletal muscle loss, or cachexia, which occurs partly from tumor products secreted into circulation. Using the LinkedOmicsKB knowledge base assembled from the Clinical Proteomics Tumor Analysis Consortium proteogenomic analysis, along with catalogs of human secretome proteins, ligand-receptor pairs and molecular signatures, we sought to identify candidate pan-cancer proteins secreted to blood that could regulate skeletal muscle phenotypes in multiple solid cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!