Inappropriate and disproportionate use of antibiotics have led to a rapid increase in antibacterial resistance. Therefore, alternative antibacterial strategies and solutions are sought to overcome any form of resistance to effectively treat and/or prevent the spread of infections. In this study, we report an eco-friendly and scalable approach to produce highly antibacterial CuOZnO nanocomposite and its inclusion in medical devices and acrylic paint. Nanocomposite has nanoporous structure composed of primary nanocrystallites of Zn ion doped CuO (∼15 nm) phase and pure ZnO (∼10 nm) phase. Nanocomposite exhibit strong antibacterial activity against broad spectrum of bacteria relevant to the biomedical and food industries. At 100 ppm concentration and 2 h contact period, over 5 log reduction was observed against Escherichia coli, Listeria monocytogenes, Methicillin-resistant Staphylococcus aureus and Salmonella enterica Serovar Typhimurium. Nanocomposite incorporated in medical gauze, topical formulation, and acrylic paint exhibit over 4 log reduction against S. aureus. Bactericidal activity is governed by synergetic combination of electrostatic interaction of nanocomposite with bacterial cell envelope and simultaneous generation of reactive oxygen species. Results described here would be of great benefit in developing medical devices, coatings, and paints to eradicate the growth of a wide range of bacterial pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/abe826DOI Listing

Publication Analysis

Top Keywords

medical devices
12
cuozno nanocomposite
8
broad spectrum
8
antibacterial activity
8
devices acrylic
8
acrylic paint
8
log reduction
8
antibacterial
5
nanocomposite
5
nanocomposite broad
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!