EGFR1, VEGFR2, Bcr-Abl and Src kinases are key drug targets in non-small cell lung cancer (NSCLC), bladder cancer, pancreatic cancer, CML, ALL, colorectal cancer, etc. The available drugs targeting these kinases have limited therapeutic efficacy due to novel mutations resulting in drug resistance and toxicity, as they target ATP binding site. Allosteric drugs have shown promising results in overcoming drug resistance, but the discovery of allosteric drugs is challenging. The allosteric binding pockets are difficult to predict, as they are generally associated with high energy conformations and regulate protein function in yet unknown mechanisms. In addition, the discovery of drugs using conventional methods takes long time and goes through several challenges, putting the lives of many cancer patients at risk. Therefore, the aim of the present work was to apply the most successful, drug repurposing approach in combination with computational methods to identify kinase inhibitors targeting novel allosteric sites on protein structure and assess their potential multi-kinase binding affinity. Multiple crystal structures belonging to EGFR1, VEGFR2, Bcr-Abl and Src tyrosine kinases were selected, including mutated, inhibitor bound and allosteric conformations to identify potential leads, close to physiological conditions. Interestingly the potential inhibitors identified were peptides. The drugs identified in this study could be used in therapy as a single multi-kinase inhibitor or in a combination of single kinase inhibitors after experimental validation. In addition, we have also identified new hot spots that are likely to be druggable allosteric sites for drug discovery of kinase-specific drugs in the future.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2021.1891140 | DOI Listing |
Adv Sci (Weinh)
December 2024
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
Increased telomerase activity has been considered as a conspicuous sign of human cancers. The catalytic cores of telomerase involve a reverse transcriptase and the human telomerase RNA (hTR). However, current detection of telomerase is largely limited to its activity at the tissue and single-cell levels.
View Article and Find Full Text PDFCell Biochem Biophys
December 2024
Research Center of Neurology, Moscow, Russia.
Allopregnanolone (Allo) is a positive allosteric modulator of the GABA receptor, and amiloride (Ami) is a competitive antagonist of the GABA receptor. The purpose of this work was to study the combined effect of Allo and Ami on functional activity of GABA receptor. The GABA-induced chloride current (I) was measured in isolated Purkinje cells of rat cerebellum using the patch-clamp technique and a system of fast application.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand; Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand. Electronic address:
Model organisms are commonly used to study human diseases; we set out to understand the relevance of several model organisms with relation to the σ1R protein. The study explored the interactions of σ1R with various agonists, antagonists across different species. Ligand and protein-protein (σ1R-BiP) docking approaches were used to understand the significance of σ1R in modulating neuroprotective mechanisms and its potential role in Alzheimer's.
View Article and Find Full Text PDFPLoS Comput Biol
December 2024
Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada.
Treatment for major depressive disorder (depression) often has partial efficacy and a large portion of patients are treatment resistant. Recent studies implicate reduced somatostatin (SST) interneuron inhibition in depression, and new pharmacology boosting this inhibition via positive allosteric modulators of α5-GABAA receptors (α5-PAM) offers a promising effective treatment. However, testing the effect of α5-PAM on human brain activity is limited, meriting the use of detailed simulations.
View Article and Find Full Text PDFElife
December 2024
Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States.
Inhibition of Bruton's tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders, and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib, and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!