In the last larval instar, uncommitted progenitor cells in the Drosophila eye primordium start to adopt individual retinal cell fates, arrest their growth and proliferation, and initiate terminal differentiation into photoreceptor neurons and other retinal cell types. To explore the regulation of these processes, we have performed mRNA-Seq studies of the larval eye and antennal primordial at multiple developmental stages. A total of 10,893 fly genes were expressed during these stages and could be adaptively clustered into gene groups, some of whose expression increases or decreases in parallel with the cessation of proliferation and onset of differentiation. Using in situ hybridization of a sample of 98 genes to verify spatial and temporal expression patterns, we estimate that 534 genes or more are transcriptionally upregulated during retinal differentiation, and 1367 or more downregulated as progenitor cells differentiate. Each group of co-expressed genes is enriched for regulatory motifs recognized by co-expressed transcription factors, suggesting that they represent coherent transcriptional regulatory programs. Using available mutant strains, we describe novel roles for the transcription factors SoxNeuro (SoxN), H6-like homeobox (Hmx), CG10253, without children (woc), Structure specific recognition protein (Ssrp), and multisex combs (mxc).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049564PMC
http://dx.doi.org/10.1093/genetics/iyab007DOI Listing

Publication Analysis

Top Keywords

drosophila eye
8
progenitor cells
8
retinal cell
8
transcription factors
8
regulators drosophila
4
eye development
4
development identified
4
identified temporal
4
temporal transcriptome
4
transcriptome changes
4

Similar Publications

Drosophila Modulo is Essential for Transposon Silencing and Developmental Robustness.

J Biol Chem

January 2025

Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA. Electronic address:

Transposable element (TE) silencing in the germline is crucial for preserving genome integrity; its absence results in sterility and diminished developmental robustness. The Piwi-interacting RNA (piRNA) pathway is the primary small non-coding RNA mechanism by which TEs are silenced in the germline. Three piRNA binding proteins promote the piRNA pathway function in the germline- P-element-induced wimpy testis (Piwi), Aubergine (Aub), and Argonaute 3 (Ago3).

View Article and Find Full Text PDF

A longstanding challenge in biology is accurately analyzing images acquired using microscopy. Recently, machine learning (ML) approaches have facilitated detailed quantification of images that were refractile to traditional computation methods. Here, we detail a method for measuring pigments in the complex-mosaic adult eye using high-resolution photographs and the pixel classifier [1].

View Article and Find Full Text PDF

Unlabelled: The deubiquitinating enzyme BAP1, the catalytic subunit of the PR-DUB complex, is implicated in several cancers, in the familial cancer syndrome BAP1 Tumor Predisposition Syndrome, and in the neurodevelopmental disorder Küry -Isidor syndrome. In there are numerous reports in the literature describing developmental patterning phenotypes for several chromatin regulators including the discovery of Polycomb itself, but corresponding adult morphological phenotypes caused by developmental dysregulation of ortholog ( ) are less well-described. We report here that knockdown of in the eye and wing produce concomitant chromatin dysregulation phenotypes.

View Article and Find Full Text PDF

Aging is characterized by extensive metabolic dysregulation. Redox coenzyme nicotinamide adenine dinucleotide (NAD) can exist in oxidized (NAD) or reduced (NADH) states, which together form a key NADH/NAD redox pair. Total levels of NAD decline with age in a tissue-specific manner, thereby playing a significant role in the aging process.

View Article and Find Full Text PDF

Background: Aniridia is a rare panocular disease caused by gene mutation in the PAX6, which is essential for eye development. Aniridia is inherited in an autosomal dominant manner, but its phenotype can vary significantly among individuals with the same mutation. Animal models, such as drosophila, zebrafish, and rodents, have been used to study aniridia through Pax6 deletions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!