The objective of this study was to evaluate the biocompatibility and mechanical properties of two commercially available and one experimental periodontal dressing materials. The cytotoxicity of Periobond ® , Barricaid ® and one experimental periodontal dressing based on Exothane ® 8 monomer was tested on 3T3/NIH mouse fibroblast. Genotoxicity was assessed by micronuclei formation, and cell alterations were analyzed using light microscopy. Both biological assays were performed using the eluate obtained from specimens after 24, 72, or 168 hours of incubation. Mechanical characterization was assessed through the ultimate tensile strength and the water sorption and solubility tests. The significance level of α = 0.05 was used for all statistical analyses. All the materials promoted a cell viability lower than 60% in all evaluated times. In general, the cell viability was significantly reduced after 72 and 168h of specimens' incubation. Considering the factor material, there were not statistical differences in the cell viability (p = 0.156). The genotoxicity was not statistically significant among the groups in the different periods of time (p > 0.05). Differences in the ultimate tensile strength values were not statistically significant different among the groups (p = 0.125). Periobond ® showed the higher water sorption values (p < 0.001). Regarding solubility, there were no statistical differences between the groups (p = 0.098). All the periodontal dressing materials evaluated in this study exerted a cytotoxic effect against mouse fibroblasts, and their toxicity became more evident over time. Among the materials evaluated, the experimental light-cure type has shown overall similar properties to the commercial references.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/1807-3107bor-2021.vol35.0045 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland.
Oral diseases, both acute and chronic, of infectious or non-infectious etiology, represent some of the most serious medical problems in dentistry. Data from the literature increasingly indicate that changes in the oral microbiome, and therefore, the overgrowing of pathological microflora, lead to a variety of oral-localized medical conditions such as caries, gingivitis, and periodontitis. In recent years, compelling research has been devoted to the use of natural antimicrobial peptides as therapeutic agents in the possible treatment of oral diseases.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea.
A novel water-soluble root canal filling material based on sodium iodide (NaI) has been developed to overcome the limitations of existing iodine-based formulations. However, the biological stability of this approach in animal studies remains unverified. This study evaluated the biocompatibility of NaI compared to commercial root canal filling materials (Calcipex II and Vitapex) in pulpectomized canine teeth to assess its clinical applicability.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany.
In recent years, there has been a growing number of adult orthodontic patients with periodontal disease. The progression of periodontal disease is well-linked to oxidative stress (OS). Nevertheless, the impact of OS on orthodontic tooth movement (OTM) is not fully clarified.
View Article and Find Full Text PDFLife (Basel)
December 2024
Department of Microbiology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri 38170, Turkey.
Background: Effective management of primary apical periodontitis depends on understanding the dynamic interactions within the root canal microbiome. This study aimed to investigate the effect of sequential antimicrobial phases on the root canal microbiome during a two-visit treatment approach, with a focus on calcium hydroxide medication.
Methods: Samples were collected from three teeth across four treatment phases: initial infection (S1), after chemomechanical preparation (S2), after intracanal medication (S3), and after a final flush (S4).
Biomedicines
November 2024
Department of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras 37200-000, MG, Brazil.
Periodontal disease (PD) leads to the destruction of supportive tissues through an inflammatory response induced by biofilm accumulation. This low-grade systemic inflammation from PD increases the risk of comorbidities. Among potential therapeutic agents for PD, humic acids (HAs) are notable for their anti-inflammatory and immunomodulatory properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!