Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microporous SAPO-35 molecular sieves (Levyne type) were synthesized in non-aqueous media by using different inorganic promoters (HClO , HF, HPO, and NaNO) to enhance the rate of crystallization, and the as-synthesized materials were characterized by using different methods such as powder X-ray diffraction spectroscopy (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), magic angle spinning-nuclear magnetic resonance spectroscopy (MAS-NMR), Brunauer-Emmett-Teller (BET) analysis, and X-ray photoelectron spectroscopy (XPS). From PXRD patterns, it was found that all the materials have a highly crystalline nature without any other impurities. SEM images reveal rhombohedral particles in all synthesis conditions. The framework structure of the synthesized materials was identified by FT-IR spectroscopy, and it reveals that all materials gave a similar framework structure. From BET and XPS, we have confirmed that the pore size and pore diameters along with the elemental compositions have a minor change. The Al, P, and Si MAS-NMR spectra of all the promoter-based SAPO-35 materials are close to those of the standard SAPO-35 material. All the above characterization studies reveal the formation of SAPO-35 in a short time with promoters. The catalytic application studies of these synthesized materials for a methanol-to-olefin conversion reaction were performed, and the efficiency of these materials was found to be similar to that of standard materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931390 | PMC |
http://dx.doi.org/10.1021/acsomega.0c06109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!