Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
l-ascorbic acid (AA) or vitamin C is a crucial nutrient needed for optimal health. However, being unable to be synthesized by the body, it is thus necessary to be included in health care products. Moreover, AA is one of the antioxidants that occur naturally, which is used in pharmaceutical and food products as an antioxidant additive. However, AA is vulnerable to environmental settings and undergoes oxidative degradation to dehydroascorbic acid and further to inactive products. Therefore, new research strategies and approaches are required to augment its stability. The objective of this study is to develop and characterize a fiber-reinforced-phospholipid (FRP) matrix-based vehicle, Zeal-AA, for the delivery of AA and optimize the oral bioavailability of the obtained AA powder using an efficacy study by open-label, randomized, single-dose, two-treatment, two-sequence, two-period, two-way crossover. The structural and surface morphologies were analyzed by Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and differential scanning calorimetry studies. Encapsulation efficiency, mean particle size, size distribution, ζ-potential measurements, and ADMET profiling revealed the potential delivery system for AA. AUC was found to be 55.23 (mg/dL) for Zeal-AA, whereas it was 9.38 (mg/dL) for AA, and was found to be 6.69 (mg/dL) for Zeal-AA, whereas it was 1.23 (mg/dL) for AA, with a fold difference of bioavailability in terms of AUC found to be 5.9 fold. The results show that a single oral dose of Zeal-AA is capable of rising the AA levels in the body relative to the control up to 24 h.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931380 | PMC |
http://dx.doi.org/10.1021/acsomega.0c05963 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!