The effects of environmental factors such as sunlight irradiation and the presence of humic acid (HA) on the physicochemical properties of commercial multiwall carbon nanotubes (MWCNT) suspended in a simulated inorganic matrix (SIM) and their impacts on bacteria growing in biofilms were evaluated. Both solar irradiation and the presence of HA lead to the dissolution of adsorbed metals on the MWCNT, which are residues of synthesis catalysts. Also, preferential adsorption of certain HA components on the MWCNT induces important modifications in the aliphatic/aromatic relationship of HA components in solution and the generation and release of new moieties. Results demonstrated that the variation of such physicochemical parameters strongly affects the interactions of MWCNT with sessile bacteria. Thus, the number of attached bacteria increased, and stress responses such as decrease in bacterial size were found in the presence of sunlight-irradiated MWCNT with a particular distribution of extracellular polymeric substances (EPS) strands. A shielding effect was observed when HA was added. It was concluded that physicochemical alterations caused by environmental conditions (with/without irradiation, presence/absence of HA) on MWCNT-containing SIM trigger distinctive adaptive behavior of bacteria in biofilms. This information must be taken into account in the development of biologically assisted treatments for organic metal co-contamination of MWCNT-containing media since MWCNT discharge alters the physicochemical properties and composition of the aqueous environment and the response of the biofilms that interact with it.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931186 | PMC |
http://dx.doi.org/10.1021/acsomega.0c05114 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!