Intravital microscopy (IVM) study approach offers several advantages over , , and 3D models. IVM provides real-time imaging of cellular events, which provides us a comprehensive picture of dynamic processes. Rapid improvement in microscopy techniques has permitted deep tissue imaging at a higher resolution. Advances in fluorescence tagging methods enable tracking of specific cell types. Moreover, IVM can serve as an important tool to study different stages of tissue regeneration processes. Furthermore, the compatibility of different tissue engineered constructs can be analyzed. IVM is also a promising approach to investigate host reactions on implanted biomaterials. IVM can provide instant feedback for improvising tissue engineering strategies. In this review, we aim to provide an overview of the requirements and applications of different IVM approaches. First, we will discuss the history of IVM development, and then we will provide an overview of available optical modalities including the pros and cons. Later, we will summarize different fluorescence labeling methods. In the final section, we will discuss well-established chronic and acute IVM models for different organs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925911 | PMC |
http://dx.doi.org/10.3389/fbioe.2021.627462 | DOI Listing |
BMC Cancer
January 2025
Department of Data Science, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.
Background: Melanoma is a highly aggressive skin cancer, where early and accurate diagnosis is crucial to improve patient outcomes. Dermoscopy, a non-invasive imaging technique, aids in melanoma detection but can be limited by subjective interpretation. Recently, machine learning and deep learning techniques have shown promise in enhancing diagnostic precision by automating the analysis of dermoscopy images.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Kocaeli University Faculty of Medicine, Kocaeli, Türkiye.
Introduction: Psoriasis is a chronic inflammatory skin disorder affecting millions worldwide. Dermoscopy and proximal nailfold capillaroscopy have emerged as valuable tools for understanding the pathophysiology and treatment response of psoriasis lesions.
Objectives: This study aimed to contribute to the limited literature on using dermoscopic findings to detect treatment effectiveness in patients with psoriasis vulgaris.
Proc Natl Acad Sci U S A
January 2025
Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
Most gene therapies exert their actions via manipulation of hepatocytes (parenchymal cells) and the reasons behind the suboptimal performance of synthetic mRNA in non-parenchymal cells (NPC) such as Kupffer cells (KC), and liver macrophages, remain unclear. Here, the spatio-temporal distribution of mRNA encoding enhanced green fluorescent protein (Egfp), siRNA, or both co-encapsulated into lipid nanoparticles (LNP) in the liver in vivo using real-time intravital imaging is investigated. Although both KC and hepatocytes demonstrate comparable high and rapid uptake of mRNA-LNP and siRNA-LNP in vivo, the translation of Egfp mRNA occurs exclusively in hepatocytes during intravital imaging.
View Article and Find Full Text PDFSci Rep
January 2025
School of Information and Electronic Engineering and Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Zhejiang University of Science and Technology, No. 318, Hangzhou, Zhejiang, China.
Skin cancer is common and deadly, hence a correct diagnosis at an early age is essential. Effective therapy depends on precise classification of the several skin cancer forms, each with special traits. Because dermoscopy and other sophisticated imaging methods produce detailed lesion images, early detection has been enhanced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!