Background: Acute () and chronic () alcohol exposure induces neuroplastic changes in the dorsal striatum, a critical region implicated in instrumental learning.
Objective: Sex differences are evident in alcohol reward and reinforcement, with female rats consuming higher amount of alcohol in operant paradigms compared to male rats. However, sex differences in the neuroplastic changes produced by acute alcohol in the dorsal striatum have been unexplored.
Methods: Using electrophysiological recordings from dorsal striatal slices obtained from adult male and female rats, we investigated the effects of ethanol exposure on synaptic transmission and synaptic plasticity. Ethanol (44 mM) enhanced basal synaptic transmission in both sexes. Ethanol also enhanced long-term potentiation in both sexes. Other measures of synaptic plasticity including paired-pulse ratio were unaltered by ethanol in both sexes.
Results: The results suggest that alterations in synaptic plasticity induced by acute ethanol, at a concentration associated with intoxication, could play an important role in alcohol-induced experience-dependent modification of corticostriatal circuits underlying the learning of goal-directed instrumental actions and formation of habits mediating alcohol seeking and taking.
Conclusions: Taken together, understanding the mechanism(s) underlying alcohol induced changes in corticostriatal function may lead to the development of more effective therapeutic agents to reduce habitual drinking and seeking associated with alcohol use disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7903017 | PMC |
http://dx.doi.org/10.3233/BPL-190097 | DOI Listing |
Cureus
December 2024
Department of Physiology, Touro College of Osteopathic Medicine, Middletown, USA.
Down syndrome (DS) is a genetic intellectual disorder caused by trisomy of chromosome 21 (Hsa21) and presents with a variety of phenotypes. The correlation between the chromosomal abnormality and the resulting symptoms is unclear, partly due to the spectrum of impairments observed. However, it has been determined that trisomy 21 contributes to neurodegeneration and impaired neurodevelopment resulting from decreased neurotransmission, neurogenesis, and synaptic plasticity.
View Article and Find Full Text PDFBurns Trauma
January 2025
The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), 333 Chuanan Road, Chengxi Street, Wenling City, Zhejiang Province 317500, China.
Background: Neuronal structure is disrupted after spinal cord injury (SCI), causing functional impairment. The effectiveness of exercise therapy (ET) in clinical settings for nerve remodeling post-SCI and its underlying mechanisms remain unclear. This study aims to explore the effects and related mechanisms of ET on nerve remodeling in SCI rats.
View Article and Find Full Text PDFLycopene is a natural plant extract widely studied for its powerful antioxidant and neuroprotective effects. Emerging evidence suggests that it also possesses potential antidepressant properties. Compared to commonly used clinical antidepressants, lycopene offers higher safety; however, its underlying mechanisms remain unclear.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Background: Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is difficult to predict and is typically diagnosed only after symptoms manifest. Recently, CD4 T cell-derived double-negative T (DNT) cells have shown strong immuno-regulatory properties in both in vitro and in vivo neuronal inflammation studies. However, the effectiveness of DNT cells in treating on AD are not yet fully understood.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
January 2025
Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
Lipids play an essential role in synaptic function, significantly impacting synaptic physiology through their dynamic nature and signaling capabilities. Membrane lipids, including cholesterol, phospholipids, and gangliosides, are crucial for synaptic organization and function. They act as structural integrators and signaling molecules, guiding vesicle intracellular movement and regulating enzyme activity to support neuronal activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!