Premise: Large-scale projects such as the National Ecological Observatory Network (NEON) collect ecological data on entire biomes to track climate change. NEON provides an opportunity to launch community transcriptomic projects that ask integrative questions in ecology and evolution. We conducted a pilot study to investigate the challenges of collecting RNA-seq data from diverse plant communities.

Methods: We generated >650 Gbp of RNA-seq for 24 vascular plant species representing 12 genera and nine families at the Harvard Forest NEON site. Each species was sampled twice in 2016 (July and August). We assessed transcriptome quality and content with TransRate, BUSCO, and Gene Ontology annotations.

Results: Only modest differences in assembly quality were observed across multiple -mers. On average, transcriptomes contained hits to >70% of loci in the BUSCO database. We found no significant difference in the number of assembled and annotated transcripts between diploid and polyploid transcriptomes.

Discussion: We provide new RNA-seq data sets for 24 species of vascular plants in Harvard Forest. Challenges associated with this type of study included recovery of high-quality RNA from diverse species and access to NEON sites for genomic sampling. Overcoming these challenges offers opportunities for large-scale studies at the intersection of ecology and genomics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910807PMC
http://dx.doi.org/10.1002/aps3.11409DOI Listing

Publication Analysis

Top Keywords

rna-seq data
12
harvard forest
12
species vascular
8
vascular plants
8
plants harvard
8
species
5
pilot rna-seq
4
data
4
data species
4
forest premise
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!