In this study, we use non-linear imaging microscopy to characterize the structural properties of porous collagen-GAG scaffolds (CGS) seeded with human umbilical vein endothelial cells (HUVECs), as well as human mesenchymal stem cells (hMSCs), a co-culture previously reported to form vessel-like structures inside CGS. The evolution of the resulting tissue construct was monitored over 10 days via simultaneous two- and three-photon excited fluorescence microscopy. Time-lapsed 2- and 3-photon excited fluorescence imaging was utilized to monitor the temporal evolution of the vascular-like structures up to 100 µm inside the scaffold up to 10 days post-seeding. 3D polarization-dependent second harmonic generation (PSHG) was utilized to monitor collagen-based scaffold remodeling and determine collagen fibril orientation up to 200 µm inside the scaffold. We demonstrate that polarization-dependent second harmonic generation can provide a novel way to quantify the reorganization of the collagen architecture in CGS simultaneously with key biomechanical interactions between seeded cells and CGS that regulate the formation of vessel-like structures inside 3D tissue constructs. A comparison between samples at different days in vitro revealed that gradually, the scaffolds developed an orthogonal net-like architecture, previously found in real skin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7901316PMC
http://dx.doi.org/10.1364/BOE.411501DOI Listing

Publication Analysis

Top Keywords

second harmonic
12
harmonic generation
12
vessel-like structures
8
structures inside
8
excited fluorescence
8
utilized monitor
8
µm inside
8
inside scaffold
8
polarization-dependent second
8
three-dimensional characterization
4

Similar Publications

Proximity ferroelectricity in wurtzite heterostructures.

Nature

January 2025

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.

Proximity ferroelectricity is an interface-associated phenomenon in electric-field-driven polarization reversal in a non-ferroelectric polar material induced by one or more adjacent ferroelectric materials. Here we report proximity ferroelectricity in wurtzite ferroelectric heterostructures. In the present case, the non-ferroelectric layers are AlN and ZnO, whereas the ferroelectric layers are AlBN, AlScN and ZnMgO.

View Article and Find Full Text PDF

Form-function relationships often have tradeoffs: if a material is tough, it is often inflexible, and vice versa. This is particularly relevant for the elephant trunk, where the skin should be protective yet elastic. To investigate how this is achieved, we used classical histochemical staining and second harmonic generation microscopy to describe the morphology and composition of elephant trunk skin.

View Article and Find Full Text PDF

Public Health Discussions on Social Media: Evaluating Automated Sentiment Analysis Methods.

JMIR Form Res

January 2025

Department of Health Administration, The College of Health Professions, Central Michigan University, Mt Pleasant, MI, United States.

Article Synopsis
  • Sentiment analysis is a key method for analyzing text, especially in social media research, where the choice between manual and automated methods is crucial.
  • The study compared several sentiment analysis tools, including VADER, TEXT2DATA, LIWC-22, and ChatGPT 4.0, against manually coded sentiment scores from YouTube comments on the opioid crisis, assessing factors like ease of use and cost.
  • Findings revealed that LIWC-22 excelled in identifying sentiment patterns, while VADER was best at classifying negative comments, but overall, automated tools showed only fair agreement with manual coding, with ChatGPT performing poorly.
View Article and Find Full Text PDF

Two-dimensional (2D) organic-inorganic hybrid metal halides (OIMHs), characterized by noncentrosymmetric structures arising from the incorporation of chiral organic molecules that break inversion symmetry, have attracted significant attention. Particularly, chiral-polar 2D OIMHs offer a unique platform for multifunctional applications, as the coexistence of chirality and polarity enables the simultaneous manifestation of distinct properties such as nonlinear optical (NLO) effects, circular dichroism (CD), and ferroelectricity. In this study, we report the first synthesis of hafnium (Hf)-based chiral 2D OIMHs, achieved through the strategic incorporation of -substituents on the benzene ring of chiral organic components.

View Article and Find Full Text PDF

Mechanical Twisting-Induced Enhancement of Second-Order Optical Nonlinearity in a Flexible Molecular Crystal.

J Am Chem Soc

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.

Flexible molecular crystals are essential for advancing smart materials, providing unique functionality and adaptability for applications in next-generation electronics, pharmaceuticals, and energy storage. However, the optical applications of flexible molecular crystals have been largely restricted to linear optics, with nonlinear optical (NLO) properties rarely explored. Herein, we report on the application of mechanical twisting of flexible molecular crystals for second-order nonlinear optics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!