The protective mechanism of action of plantamajoside on a rat model of acute spinal cord injury.

Exp Ther Med

Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Jiangan, Wuhan, Hubei 430014, P.R. China.

Published: April 2021

Acute spinal cord injury (ASCI) is a severe traumatic disease of the central nervous system, characterized by a high incidence and high morbidity, for which there are no effective drug therapies in the clinic. A rat model of ASCI was established to study the effects of plantamajoside (PMS) treatment on the expression of apoptotic factors, including caspase-3, caspase-9, poly (ADP-ribose) polymerase (PARP), Bax and Bcl-2. The Allen's weight hit rat ASCI model was used for the present study, and the rats were treated with various concentrations of PMS. The behavior of rats was assessed using the Basso-Beattle-Bresnahan locomotor rating scale (BBB), the histopathologic changes of spinal cord tissue were observed by hematoxylin and eosin staining, the survival of neurons was assessed by TUNEL staining and the expression levels of apoptotic proteins such as caspase-3, caspase-9, PARP, Bcl-2 and Bax was measured using western blot assays and RT-qPCR. It was observed that PMS could reverse the decrease in the BBB score after ASCI, improve the morphological characteristics of the spinal cord, reduce the degree apoptosis and affect the expression of caspase-3, caspase-9, PARP, Bax and Bcl-2 in a concentration dependent manner. In conclusion, PMS protected ASCI rats by inhibiting apoptosis; therefore PMS may be a potential candidate for ASCI therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918247PMC
http://dx.doi.org/10.3892/etm.2021.9809DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
caspase-3 caspase-9
12
rat model
8
acute spinal
8
cord injury
8
parp bax
8
bax bcl-2
8
caspase-9 parp
8
asci
6
pms
5

Similar Publications

Clinical characteristics associated with cervical hydrated nucleus pulposus extrusion in dogs.

J Vet Intern Med

January 2025

Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.

Background: Clinical characteristics of cervical hydrated nucleus pulposus extrusion (HNPE) in dogs compared to other causes of cervical myelopathy are not well described.

Hypothesis/objectives: To evaluate for clinical characteristics and mechanical ventilation likelihood associated with HNPE compared to other causes of cervical myelopathy.

Animals: Three hundred seventy-seven client-owned dogs from 2010 to 2022.

View Article and Find Full Text PDF

The Unripe Carob Extract ( L.) as a Potential Therapeutic Strategy to Fight Oxaliplatin-Induced Neuropathy.

Nutrients

December 2024

Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy.

Background: Oxaliplatin-induced neuropathy (OIN) is a severe painful condition that strongly affects the patient's quality of life and cannot be counteracted by the available drugs or adjuvants. Thus, several efforts are devoted to discovering substances that can revert or reduce OIN, including natural compounds. The carob tree, L.

View Article and Find Full Text PDF

The journal retracts the article titled "Long Coding RNA XIST Contributes to Neuronal Apoptosis through the Downregulation of AKT Phosphorylation and Is Negatively Regulated by miR-494 in Rat Spinal Cord Injury" [...

View Article and Find Full Text PDF

Forecasting the progression of the disease in the early inflammatory stage of the most prevalent type of multiple sclerosis (MS), referred to as relapsing-remitting multiple sclerosis (RRMS), is essential for making prompt treatment modifications, aimed to reduce clinical relapses and disability. In total, 58 patients with RRMS, having an Expanded Disability Status Scale (EDSS) score less than 4, were included in this study. Baseline magnetic resonance imaging (MRI) was performed, and brain and spinal cord lesions were evaluated.

View Article and Find Full Text PDF

Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!