Genetic Control Diversity Drives Differences Between Cadmium Distribution and Tolerance in Rice.

Front Plant Sci

Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.

Published: February 2021

AI Article Synopsis

  • - Rice, a key food source for nearly half the global population, can accumulate harmful levels of cadmium (Cd) from contaminated soil, affecting both its growth and quality.
  • - The study explored the genetic variations in different rice varieties to understand how they distribute and tolerate Cd, identifying several quantitative trait loci (QTLs) that influence these traits.
  • - Key findings reveal that both additive and epistatic genetic effects contribute to how rice manages Cd distribution and tolerance, offering insights for enhancing rice varieties through genetic improvement.

Article Abstract

Rice, a staple crop for nearly half the planet's population, tends to absorb and accumulate excessive cadmium (Cd) when grown in Cd-contaminated fields. Low levels of Cd can degrade the quality of rice grains, while high levels can inhibit the growth of rice plants. There is genotypic diversity in Cd distribution and Cd tolerance in different rice varieties, but their underlying genetic mechanisms are far from elucidated, which hinders genetic improvements. In this study, a joint study of phenotypic investigation with quantitative trait loci (QTLs) analyses of genetic patterns of Cd distribution and Cd tolerance was performed using a biparent population derived from and rice varieties. We identified multiple QTLs for each trait and revealed that additive effects from various loci drive the inheritance of Cd distribution, while epistatic effects between various loci contribute to differences in Cd tolerance. One pleiotropic locus, , was found to affect the Cd distribution from both roots to shoots and from leaf sheaths to leaf blades. The results expand our understanding of the diversity of genetic control over Cd distribution and Cd tolerance in rice. The findings provide information on potential QTLs for genetic improvement of Cd distribution in rice varieties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933448PMC
http://dx.doi.org/10.3389/fpls.2021.638095DOI Listing

Publication Analysis

Top Keywords

distribution tolerance
16
tolerance rice
12
rice varieties
12
genetic control
8
rice
8
effects loci
8
distribution
7
genetic
6
tolerance
5
control diversity
4

Similar Publications

Unexpected species diversity in the understanding of selenium-containing soil invertebrates.

Sci Rep

January 2025

Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, College of Biology and Agricultural Resources, Hubei Zhongke Research Institute of Industrial Technology, Huanggang Normal University, Huanggang, 438000, Hubei, China.

Yutangba, situated in Enshi City, Hubei Province, is globally noted for its high selenium (Se) content. Soil invertebrates are essential to the functionality and services of terrestrial ecosystems, yet their community composition in this region remains under-explored. This study utilized environmental DNA metabarcoding to investigate the interrelations among environmental factors, soil invertebrate diversity, and community characteristics concerning soil Se content, pH, and moisture content in the region.

View Article and Find Full Text PDF

Distribution and Fasciola infection rates of Lymnaea snails and cattle in high-salinity areas of Mekong Delta, Vietnam.

J Vet Med Sci

January 2025

Laboratory of Global Animal Resource Science, Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo.

Fasciola-induced fascioliasis is a zoonotic disease with significant health and economic impacts on humans and livestock. Freshwater Lymnaea snails serve as intermediate hosts, contributing to the increasing prevalence of fascioliasis in cattle in coastal areas. The salinity tolerance of Lymnaea snails was investigated along with their distribution and Fasciola infection rates in both snails and grazing cattle in Ben Tre, Tra Vinh, and Soc Trang provinces in Mekong Delta, Vietnam, where seawater reversely enters into the paddy field during the dry season.

View Article and Find Full Text PDF

G-CSF modulates innate and adaptive immunity via the ligand-receptor pathway of binding GCSFR in Flounder (Paralichthys olivaceus).

Fish Shellfish Immunol

January 2025

Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, PR China. Electronic address:

Granulocyte colony stimulating factor (G-CSF) has been shown in mammalia to activate a series of signal transduction systems and exert various biological effects, such as controlling the differentiation, proliferation, and survival of granulocytes, promoting the movement of hematopoietic stem cells from the bone marrow to the bloodstream, and triggering the development of T cells, dendritic cells, and immune tolerance in transplants. In this study, the mRNA of flounder G-CSF (PoG-CSF) and its receptor (PoGCSFR) were detected and widely expressed in all examined tissues with the highest expression in peritoneal cells. G-CSF and GCSFR cells were observed to be abundantly distributed in the leukocytes from the peritoneal cavity, followed by head kidney.

View Article and Find Full Text PDF

Genome-wide identification of the bZIP family in Eutrema salsugineum and functional analysis of EsbZIP51 in regulating salt tolerance.

Plant Physiol Biochem

January 2025

Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China. Electronic address:

The halophyte Eutrema salsugineum is naturally distributed in saline-alkali soil and has been proposed as a model plant for understanding plant salt tolerance. As one of the largest and most diverse TF families, basic leucine zipper motif (bZIP) TFs perform robust functions in plant growth and environmental response, however the generalized information of EsbZIP genes and its regulatory role in salt tolerance has not been systematically studied to date. Here, we identified and characterized the bZIP members in E.

View Article and Find Full Text PDF

Polyamine oxidase (PAOs) are enzymes associated with polyamine catabolism and play important roles in growth and development and stress tolerance of plants. In the present study, genome-wide discovery and analysis of the PAO family in sorghum was done utilizing model PAO of Arabidopsis. Six PAO genes were found using publicly available genomic data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!