Ferroptosis Enhanced Diabetic Renal Tubular Injury HIF-1α/HO-1 Pathway in db/db Mice.

Front Endocrinol (Lausanne)

Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.

Published: December 2021

Background: Ferroptosis is a recently identified iron-dependent form of cell death as a result of increased reactive oxygen species (ROS) and lipid peroxidation. In this study, we investigated whether ferroptosis aggravated diabetic nephropathy (DN) and damaged renal tubules through hypoxia-inducible factor (HIF)-1α/heme oxygenase (HO)-1 pathway in db/db mice.

Methods: Db/db mice were administered with or without ferroptosis inhibitor Ferrostatin-1 treatment, and were compared with db/m mice.

Results: Db/db mice showed higher urinary albumin-to-creatinine ratio (UACR) than db/m mice, and Ferrostatin-1 reduced UACR in db/db mice. Db/db mice presented higher kidney injury molecular-1 and neutrophil gelatinase-associated lipocalin in kidneys and urine compared to db/m mice, with renal tubular basement membranes folding and faulting. However, these changes were ameliorated in db/db mice after Ferrostatin-1 treatment. Fibrosis area and collagen I were promoted in db/db mouse kidneys as compared to db/m mouse kidneys, which was alleviated by Ferrostatin-1 in db/db mouse kidneys. HIF-1α and HO-1 were increased in db/db mouse kidneys compared with db/m mouse kidneys, and Ferrostatin-1 decreased HIF-1α and HO-1 in db/db mouse kidneys. Iron content was elevated in db/db mouse renal tubules compared with db/m mouse renal tubules, and was relieved in renal tubules of db/db mice after Ferrostatin-1 treatment. Ferritin was increased in db/db mouse kidneys compared with db/m mouse kidneys, but Ferrostatin-1 reduced ferritin in kidneys of db/db mice. Diabetes accelerated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived ROS formation in mouse kidneys, but Ferrostatin-1 prevented ROS formation derived by NADPH oxidases in db/db mouse kidneys. The increased malondialdehyde (MDA) and the decreased superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GSH-Px) were detected in db/db mouse kidneys compared to db/m mouse kidneys, whereas Ferrostatin-1 suppressed MDA and elevated SOD, CAT, and GSH-Px in db/db mouse kidneys. Glutathione peroxidase 4 was lower in db/db mouse kidneys than db/m mouse kidneys, and was exacerbated by Ferrostatin-1 in kidneys of db/db mice.

Conclusions: Our study indicated that ferroptosis might enhance DN and damage renal tubules in diabetic models through HIF-1α/HO-1 pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7930496PMC
http://dx.doi.org/10.3389/fendo.2021.626390DOI Listing

Publication Analysis

Top Keywords

mouse kidneys
60
db/db mouse
40
db/db mice
32
compared db/m
28
db/m mouse
24
db/db
20
renal tubules
20
kidneys
18
mouse
17
kidneys compared
16

Similar Publications

Neutrophil NADPH oxidase promotes bacterial eradication and regulates NF-κB-Mediated inflammation via NRF2 signaling during urinary tract infections.

Mucosal Immunol

December 2024

Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH 43215, USA. Electronic address:

The precise role of neutrophil-derived reactive oxygen species (ROS) in combating bacterial uropathogens during urinary tract infections (UTI) remains largely unexplored. In this study, we elucidate the antimicrobial significance of NADPH oxidase 2 (NOX2)-derived ROS, as opposed to mitochondrial ROS, in facilitating neutrophil-mediated eradication of uropathogenic Escherichia coli (UPEC), the primary causative agent of UTI. Furthermore, NOX2-derived ROS regulates NF-κB-mediated inflammatory responses in neutrophils against UPEC by inducing the release of nuclear factor erythroid 2-related factor 2 (Nrf2) from its inhibitor, Kelch-like ECH-associated protein 1 (Keap1).

View Article and Find Full Text PDF

Protective effects of Sulforaphene on kidney damage and gut dysbiosis in high-fat diet plus streptozotocin-induced diabetic mice.

Food Chem

December 2024

State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:

Diabetic nephropathy (DN) is one of the most serious and prevalent complications associated with diabetes. Consequently, antidiabetic drugs or foods potentially protecting the kidneys are of significant therapeutic value. Sulforaphene (SFE) is a natural isothiocyanate derived from radish seeds, known for its anti-inflammatory and antioxidant properties.

View Article and Find Full Text PDF

Bright NIR-II emissive cyanine dye-loaded lipoprotein-mimicking nanoparticles for fluorescence imaging-guided and targeted NIR-II photothermal therapy of subcutaneous glioblastoma.

J Nanobiotechnology

December 2024

School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.

Cyanine dye-containing nanoparticles have widely been used in "all-in-one" NIR fluorescence imaging (FI)-guided photothermal therapy (PTT) because of their intrinsically large extinction coefficient and available physical and chemical modulation methods to tune absorption and emission wavelengths. The combination of good brightness and excellent tumor-targeting capacity is the key to realize efficient NIR-II FI-guided PTT. In this study, by covalently decorating NIR-II absorptive cyanine dyes with bulky AIE motify, we demonstrate how steric hindrance suppresses π-π stacking-induced fluorescence quenching and contributes to the good brightness of NIR-II FI of subcutaneous glioblastoma.

View Article and Find Full Text PDF

A novel multi-organ male model of alcohol-induced acute-on-chronic liver failure reveals NET-mediated hepatocellular death which is prevented by RIPK3 inhibition.

Cell Mol Gastroenterol Hepatol

December 2024

Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Broad Institute, Cambridge, MA. Electronic address:

Background And Aims: Alcohol abuse is the most frequent precipitating factor of acute-on-chronic liver failure (ACLF). We aimed at developing an alcohol-induced ACLF model and dissecting its underlying molecular mechanisms.

Methods: ACLF was triggered by a single alcohol binge (5g/Kg) in a bile duct ligation (BDL) liver fibrosis murine model.

View Article and Find Full Text PDF

Background: Adipose mesenchymal stem cells (ADSCs) exert beneficial effects on kidney disease through a paracrine mechanism. However, the specific molecular mechanisms by which ADSCs treat renal fibrosis are not yet fully understood. Therefore, it is crucial to clarify the therapeutic effects of ADSC-derived extracellular vesicles (ADSC-EVs) on the progression of renal fibrosis and their underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!