Many Coronavirus disease 2019 (COVID-19) and post-COVID-19 patients experience muscle fatigues. Early detection of muscle fatigue and muscular paralysis helps in the diagnosis, prediction, and prevention of COVID-19 and post-COVID-19 patients. Nowadays, the biomedical and clinical domains widely used the electromyography (EMG) signal due to its ability to differentiate various neuromuscular diseases. In general, nerves or muscles and the spinal cord influence numerous neuromuscular disorders. The clinical examination plays a major role in early finding and diagnosis of these diseases; this research study focused on the prediction of muscular paralysis using EMG signals. Machine learning-based diagnosis of the diseases has been widely used due to its efficiency and the hybrid feature extraction (FE) methods with deep learning classifier are used for the muscular paralysis disease prediction. The discrete wavelet transform (DWT) method is applied to decompose the EMG signal and reduce feature degradation. The proposed hybrid FE method consists of Yule-Walker, Burg's method, Renyi entropy, mean absolute value, min-max voltage FE, and other 17 conventional features for prediction of muscular paralysis disease. The hybrid FE method has the advantage of extract the relevant features from the signals and the Relief-F feature selection (FS) method is applied to select the optimal relevant feature for the deep learning classifier. The University of California, Irvine (UCI), EMG-Lower Limb Dataset is used to determine the performance of the proposed classifier. The evaluation shows that the proposed hybrid FE method achieved 88% of precision, while the existing neural network (NN) achieved 65% of precision and the support vector machine (SVM) achieved 35% of precision on whole EMG signal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926078 | PMC |
http://dx.doi.org/10.1007/s00779-021-01531-6 | DOI Listing |
Front Neurol
December 2024
NextGen Precision Health, University of Missouri, Columbia, MO, United States.
In Periodic Paralysis (PP), a rare inherited condition caused by mutation in skeletal muscle ion channels, the phenotype changes with age, transitioning from the episodic attacks of weakness that give the condition its name, to a more degenerative phenotype of permanent progressive weakness and myopathy. This leads to disability and reduced quality of life. Neither the cause of this phenotype transition, nor why it occurs around the age of 40 is known.
View Article and Find Full Text PDFThe study of heat tolerance in Drosophila melanogaster has been of particular interest to researchers for decades, with a common approach to assessing heat tolerance being to monitor the time to knockdown (TKD) after exposure to an elevated temperature. Classically, flies are housed in individual vials and placed inside a heated water bath. TKD is then monitored manually by researchers.
View Article and Find Full Text PDFEinstein (Sao Paulo)
December 2024
Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
Spinal muscular atrophy is a rare hereditary neurodegenerative disease characterized by progressive motor neuron loss. The most common form of SMA is linked to 5q (5q-SMA) and is classified into subtypes according to the age of onset and maximum motor function achieved. The severity ranges from progressive infantile paralysis and premature death (type 1) to limited motor neuron loss in adults (type 4).
View Article and Find Full Text PDFMed Sci Monit
December 2024
Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
Anesthesia management in neuromuscular diseases (NMDs) is a complex challenge, requiring careful preoperative evaluation, tailored treatment strategies, and vigilant perioperative monitoring. This review examines the nuances of anesthesia in patients with NMD, addressing potential complications such as intubation difficulties, respiratory failure, and adverse effects of anesthetics and neuromuscular conduction blocking agents (NMBAs). Nondepolarizing NMBAs, including steroidal agents and benzylisoquinolines, are analyzed for their role, risks, and optimal use based on procedural requirements and patient characteristics.
View Article and Find Full Text PDFEpilepsia
November 2024
Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!