The objective of the study was to assess selenium and other elements levels in Indian Roti bread from Se-rich maize and rice using inductively coupled plasma mass-spectrometry. Se levels in Roti bread from Se-rich maize and rice exceeded those in the control samples by a factor of more than 594 and 156, respectively. Using Se-enriched maize increased bread Co, Cr, Mn, Mo, and Zn content, whereas Fe and I levels were reduced. In Se-rich rice-based bread a decrease in Co, Cr, Cu, Fe, I, Mo, and Zn contents was observed. Daily consumption of Se-rich maize and rice bread (100 g) could account for 5.665% and 4.309% from recommended dietary allowance, also exceeding the upper tolerable levels by a factor of 7.8 and 5.9, respectively. Therefore, Roti bread from both Se-rich maize and rice may be considered as an additional source of selenium. At the same time, regular intake of Se-rich grains and its products including breads may cause adverse health effects even after a few days and should be regularly monitored in order to prevent Se overload and toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884500 | PMC |
http://dx.doi.org/10.1007/s13197-020-04565-5 | DOI Listing |
Huan Jing Ke Xue
August 2024
Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China.
The prevalence of selenium-cadmium (Se-Cd) symbiosis in soils of geologically high background areas directly affects the safe utilization of Se-rich land resources. To investigate the migration and accumulation characteristics and bio-effectiveness of Se-Cd in the soil-crop system in typical geological high background areas of Southwest China and to realize the safe use of natural Se-rich land resources in geological high background areas, we collected 84 samples of agricultural crops (maize) and their supporting root systems and analyzed the Se-Cd content and physicochemical properties. Se-Cd accumulation characteristics, influencing factors, and bio-effectiveness of the soil-crop system were evaluated using geostatistics, bioenrichment factors, and geographic detectors.
View Article and Find Full Text PDFSci Rep
July 2024
College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
To investigate the distribution characteristics of selenium (Se) in mountainous soil-crop systems and examine the threshold value of Se-rich soil, 275 soil samples and 153 associated crop samples (rice, maize, tea, nuts, konjac, mushrooms, buckwheat, and coffee) were collected in Ximeng County, a typical mountainous area in southwest China. The total Se, available Se, organic matter, pH, sampling point elevation, and crop Se content were analyzed to examine the distribution characteristics of soil Se and the ability of primary crops to enrich Se in Ximeng County. Random forest and multiple regression models were established to identify the factors influencing the available soil Se and the crop Se enrichment coefficient.
View Article and Find Full Text PDFBackground: Selenium nanoparticles (SeNPs) are increasingly gaining attention due to its characteristics of low toxicity, high activity, and stability. Additionally, Bacillus licheniformis, as a probiotic, has achieved remarkable research outcomes in diverse fields such as medicine, feed processing, and pesticides, attracting widespread attention. Consequently, evaluating the activity of probiotics and SeNPs is paramount.
View Article and Find Full Text PDFEnshi, China, is renowned as "Selenium(Se) Capital" where widely distributed soils derived from Permian parent rocks are notably rich in Se, as well as metals, particularly cadmium(Cd). However, the soil enrichment and crop uptake of Se and metals in these high-Se and high-Cd areas are not well understood. To propose the optimal crop planting plan to ensure the safety of agricultural products, we investigated the soils and corresponding typical crops (rice, tea, and maize).
View Article and Find Full Text PDFEnviron Geochem Health
January 2024
College of Resources and Environment, Yangtze University, Wuhan, China.
Selenium constitutes an essential trace element for the human body. Moderate Se intake plays a pivotal role in preserving overall health. The absorption of Se by plants is primarily influenced by the available Se levels in soils, rather than by the soil total Se content, offering potential for exploring Se-rich crops in Se-deficient regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!