Myocardial infarction (MI) is the most prevalent disease with severe mortality, and hypoxia-induced cardiac injury and cardiomyocyte apoptosis are the significant and harmful consequences of this disease. The cross talk between hypoxia signaling and glycolysis energy flux plays a critical role in modulating MI-related heart disorder. However, the underlying mechanism remains unclear. Here, we aimed to explore the effect of a key glycolytic enzyme of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 2 (PFKFB2) on cardiac dysfunction and apoptosis in response to hypoxia. Our data demonstrated that the mRNA and protein expression of PFKFB2 were significantly elevated in the MI mice. The MI treatment promoted the activation of PFKFB2 in vivo, as presented by the remarkably increased phosphorylation levels of PFKFB2. PFKFB2 depletion enhanced MI-induced cardiac dysfunction and cardiomyocyte apoptosis in the MI mouse model. Moreover, hypoxia treatment dramatically upregulated the expression and activation of PFKFB2 in a time-dependent manner in cardiomyocytes. Hypoxia-stimulated PFKFB2 relieved hypoxia-induced cardiomyocyte apoptosis in vitro. PFKFB2 activated the fructose-2, 6-bisphosphate (Fru-2, 6-p2) /PFK/anaerobic adenosine triphosphate (ATP) glycolysis energy flux in response to hypoxia in cardiomyocytes. Mechanically, hypoxia-activated PFKFB2 by stimulating the hypoxia-inducible factor 1 (HIF-1) /ATK signaling. Thus, we conclude that HIF-1/AKT axis-activated PFKFB2 alleviates cardiac dysfunction and cardiomyocyte apoptosis in response to hypoxia. Our finding presents a new insight into the mechanism by which HIF-1/AKT/PFKFB2 signaling modulates MI-related heart disorder under the hypoxia condition, providing potential therapeutic targets and strategy for hypoxia-related myocardial injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1536/ihj.20-315 | DOI Listing |
Biochim Biophys Acta Mol Basis Dis
January 2025
College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China. Electronic address:
Excessive alcohol consumption is a major cause of alcoholic cardiomyopathy (ACM) and myocardial injury. This study aims to investigate the role of transcription factor EB (TFEB) in ethanol-induced cardiac anomalies using a murine model, AC16 human cardiomyocytes, and human plasma. Wild-type mice treated with a TFEB activator (Compound 1) or vehicle (25 mg/kg/d) were challenged with or without ethanol (3 g/kg/d, i.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People's Republic of China.
Purpose: Myocardial infarction (MI) is a prevalent cardiovascular disorder affecting individuals worldwide. There is a need to identify more effective therapeutic agents to minimize cardiomyocyte damage and enhance cardioprotection. extract is extensively used to treat neurological disorders and peripheral vascular diseases.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany.
Ischemic heart disease is the leading cause of death worldwide. Reduced oxygen supply and myocardial hypoxia lead to tissue damage and impairment of the heart function. To the best of our knowledge, the primary functional effects of hypoxia in the multicellular model of living myocardial slices (LMSs) have not been investigated so far.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Cardiology, Cardiac Arrhythmia Center, Affiliated Hospital of Nantong University, Nantong 226001, China. Electronic address:
Doxorubicin (DOX), a chemotherapeutic agent utilized in the management of cancer, provokes cardiotoxicity although effective remedy is lacking. Given that DOX provokes oxidative stress and cell death in cardiomyocytes, this study evaluated the possible involvement of cuproptosis, a newly identified form of cell death, in DOX-instigated cardiac remodeling and contractile dysfunction, alongside the impact of the heavy metal scavenger metallothionein (MT) on DOX cardiomyopathy. Cardiac-specific MT transgenic and wild-type (WT) mice were treated with DOX (5 mg/kg/wk.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!